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Geometry.  

Commensurate and incommensurate segments. The Euclidean algorithm. 

Definition. Two segments,   and  , are 
commensurate if there exists a third 
segment,  , such that it is contained in each 
of the first two segments a whole numbers of 
times with no remainder.  

                      
 

                            

The segment   is called a common measure of the segments   and  . The 
concept of commensurability is similar to that of the common divisor for 
integers. It can be extended to any two quantities of the same denomination – 
two angles, two arcs of the same radius, or two weights. 

The greatest common measure.  

If a common measure   of two segments   and   is sub-divided into two, three, 

or, generally, any number of equal smaller segments, these smaller segments 

are also common measures of the segments   and  . In this way, an infinite set 

of common measures, decreasing in length, can be obtained,  
 

 
     . Since 

any common measure is less than the smaller segment,    , there must be 

the largest among the common measures, which is called the greatest 

common measure.  

Finding the greatest common measure (GCM) is done by the method of 

consecutive exhaustion called Euclidean algorithm. It is similar to the method 

of consecutive division used for finding the greatest common divisor in 

arithmetic. The method is based on the following theorem.  

Theorem. Two segments    and   are commensurate, if and only if the smaller 

segment,  , is contained in the greater one a whole number of times with no 
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remainder, or with a remainder,    , which is commensurate with the 

smaller segment,  .  

                                                 .  

The greatest common measure of two segments is also the greatest common 

measure of the smaller segment and the remainder, or there is no remainder.  

Proof. First, consider the necessary condition. Let   and   be commensurate, 

                          , and    . Let   be their greatest 

common measure.  Then, either     (   ) and segment   is contained in 

  a whole number of times with no remainder, being the GCM of the two 

segments, or,                  . Then,                , 

where       , and, therefore,                , which shows 

that   and   are commensurate. The sufficiency follows from the observations 

that (i) if segment   is contained in   a whole number of times with no 

remainder, then the segments are commensurate, and   is the greatest 

common measure of the two, while (ii) if       , and   and   are 

commensurate with the greatest common measure  ,                 

      , then                      , and   and   are also 

commensurate with the same GCM.  

The Euclidean algorithm. 

In order to find the GCM of the two segments,   and  , we can proceed as 

follows. First, using a compass exhaust the greater segment, marking on it the 

smaller segment as many times as possible, until the remainder is smaller 

than the smaller segment,  , or there is no remainder. According to 

Archimedes’ exhaustion axiom, these are the only two possible outcomes. 

Following the above theorem, the problem now reduces to finding the GCM of 

this remainder,   , and the smaller segment,  . We now repeat the same 

procedure, exhausting segment   with   , and again, there is either no 

remainder and    is the GCM of   and  , or there is a remainder      . The 

problem is then reduced to finding the GCM of a pair of even smaller 

segments,   and   , and so on. If segments   and   are commensurate and 



their GCM,  , exists, then this process will end after some number of steps, 

namely, on step   where     . Indeed, all remainders in this process are 

multiples of  ,                and              is the 

decreasing sequence of natural numbers, which necessarily terminates, since 

any non-empty set of positive integers has the smallest number  “principle of 

the smallest integer” . If the procedure never terminates  then segments   and 

  have no common measure and are incommensurate. 

Example. The hypotenuse of an isosceles right triangle is incommensurate to 

its leg. Or, equivalently, the diagonal of a square is incommensurate to its side.  

Proof. Consider the isosceles right triangle 

ABC shown in the Figure. Because the 

hypotenuse is less than twice the leg by the 

triangle inequality, the leg can only fit once in 

the hypotenuse, this is marked by the segment 

AD. Let the perpendicular to the hypotenuse at 

point D intercept leg BC at point E. Triangle 

BDE is also isosceles. This is because angles BDE and DBE supplement equal 

angles ADB and ABD to 90 degrees, and therefore are also equal. Triangle CDE 

is an isosceles right triangle, similar to ABC. Its leg |DC|=|AC|-|AB|=|DE|=|BE| 

is a remainder of subtracting the leg |AB|=|AD| from the hypotenuse, |AC|, 

while the hypotenuse, |CE| =|BC|-|BE|=|BC|-|DC|, is the remainder of 

subtracting this remainder from the leg |AB|=|BC|. Hence, on the second step 

of the Euclidean algorithm we arrive at the same problem as the initial one, 

only scaled down by some overall factor. Obviously, this process never ends, 

and therefore the hypotenuse |AC| and the leg |AB| are incommensurate.  
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