
MATH 8: HANDOUT 24
DIVISIBILITY VII: CHINESE REMAINDER THEOREM

We have by now discussed congruences mod m, for positive integer m, and we have defined the notion
of invertibility of residues mod m (for reference, a remainder mod m is sometimes called a residue mod m).
What about noninvertibility?

Theorem. If m is a composite number such that m = ab for integers a, b > 1, then there exist non-invertible
residues (or remainders) modulo m.

Proof. We prove that a factor of m is noninvertible mod m. To see this, the equation ax ≡ 1 mod m has no
solution because a is not relatively prime to m; i.e., gcd(a,m) = a, thus ax = 1 + by is equivalent to finding
x, y such that ax− by = 1, which is impossible. So a is noninvertible mod m. □

It turns out that not only are a and b noninvertible mod m, but all of their multiples as well are noninvert-
ible. The nature of the non-invertibility of multiples of a and b mod m is closely related to the non-invertibility
of (0 mod a) and (0 mod b).

Theorem. If m = ab and r is non-invertible mod m, then (r mod a) or (r mod b) is non-invertible mod a or
b, respectively.

Proof. We have that r is invertible mod m if and only if it is relatively prime to m. Thus this theorem reduces
to the following statement: gcd(r,m) = 1 if and only if gcd(r, a) = 1 and gcd(r, b) = 1.

If gcd(r, a) ∕= 1, then gcd(r, a) = d for d > 1, and hence d|ab because d|a, thus d|m; therefore, d is
a common factor of r and m and gcd(r,m) > 1: this implies that gcd(r,m) can be 1 only if gcd(r, a) =
gcd(r, b) = 1. The converse is left as an exercise. □

These theorems motivate us to consider if there is a more specific relationship between the residues mod
m and those mod a, b. The full theorem will be given at the end of this section - before we state it, it’s worth
it to understand the multiples of a mod b: this is where we make use of the assumption that a, b be relatively
prime, i.e. gcd(a, b) = 1.

Theorem. If a, b > 1 are integers such that gcd(a, b) = 1, then the numbers 0, a, 2a, ..., (b − 1)a have unique
remainders mod b. In other words, for any integers 0 ≤ x < y < b, we must have xa ∕≡ ya mod b.

Proof. We prove by contradiction: suppose that xa ≡ ya mod b for 0 ≤ x < y < b. Then (x − y)a ≡ 0.
We know also that a is invertible mod b because gcd(a, b) = 1, thus we may multiply this congruence by the
inverse h of a mod b (i.e. ha ≡ 1 mod b) to get:

(x− y)ah ≡ 0 · h =⇒ (x− y) · 1 ≡ 0 =⇒ x− y ≡ 0 =⇒ x ≡ y.
But 0 ≤ x < y < b, thus it is a simple fact of numbers that y − x cannot be a multiple of b, which is a

contradiction. □
As a result, one can imagine that the multiples of a cycle around the residues mod b; if a = 1 for example,

then the multiples of a are simply 0, 1, 2, 3, ..., b− 1, 0, 1, 2, 3, ... etc, and if a > 1, then the multiples of a need
not be consecutive integers mod b, but they will still go through each of the residues mod b exactly once until
they return to 0 with ab ≡ 0 mod b.

It remains to notice that there are a ·b ways to choose a residue mod a and a residue mod b. Then we guess
that, since there are exactly a · b residues mod m = ab, there might be a one-to-one relationship between
pairs of residues (x, y) mod a, b and residues r mod m.

Indeed, this is the case.



Theorem (Chinese Remainder Theorem). Let a, b be relatively prime. Then the following system of congru-
ences:

x ≡ k mod a

x ≡ l mod b

has a unique solution mod ab, i.e. there exists exactly one integer x such that 0 ≤ x < ab and x satisfies both
the above congruences.

Proof. Let x = k + ta for some integer t. Then x satisfies the first congruence, and our goal will be to find t
such that x satisfies the second congruence.

To do this, write k + ta ≡ l mod b, which gives ta ≡ l − k mod b. Notice now that because a, b are
relatively prime, a has an inverse h mod b such that ah ≡ 1 mod b. Therefore t ≡ h(l − k) mod b, and
x = k + ah(l − k) is a solution to both the congruences.

To see uniqueness, suppose x and x′ are both solutions to both congruences such that 0 ≤ x, x′ < ab.
Then we have

x− x′ ≡ k − k ≡ 0 mod a

x− x′ ≡ l − l ≡ 0 mod b

Thus x − x′ is a multiple of both a and b; because a, b are relatively prime, this implies that x − x′ is a
multiple of ab, but if this is the case then x and x′ cannot both be positive and less than ab unless they are in
fact equal.

□

HOMEWORK

1. Is it possible for a multiple of 3 to be congruent to 5 mod 12?
2. (a) Find inverse of 7 mod 11.

(b) Find all solutions of the equation

7x ≡ 5 mod 11

3. Solve the following systems of congruences
(a)

x ≡ 1 mod 3

x ≡ 1 mod 5

(b)

z ≡ 1 mod 5

z ≡ 6 mod 7

4. (a) Find the remainder upon division of 232019 by 7.
(b) Find the remainder upon division of 232019 by 70. [Hint: use 70 = 7 · 10 and Chinese Remainder

Theorem.]
5. (a) Find the remainder upon division of 2446 by 100.

(b) Determine all integers k such that 10k − 1 is divisible by 99.
6. In a calendar of some ancient race, the year consists of 12 months, each 30 days long. They also use

7 day weeks, same as we do.
If first day of the year was a Monday, will it ever happen that 13th day of some month is a Friday?

If so, when will be the first time it happens, and how often will it repeat afterwards?
[Hint: this can be rewritten as a system of congruences: n ≡ 5 mod 7, n ≡ 13 mod 30. ]

7. How many remainders mod 2310 can be expressed as powers of 6?


