
MATH 8: HANDOUT 16
GEOMETRY V: CIRCLES

CIRCLES

Given a circle λ with center O,

• A radius is any line segment from O to a point A on λ,
• A chord is any line segment between distinct points A, B on λ,
• A diameter is a chord that passes through O,
• A tangent line is a line that intersects the circle exactly once; if the intersection point is A, the tangent

is said to be the tangent through A.

Moreover, we say that two circles are tangent if they intersect at exactly one point.

Theorem 21. Let A be a point on circle λ centered at O, and m a line through A. Then m is tangent to λ if and
only if m ⊥ OA. Moreover, there is exactly one tangent to λ at A.

Proof. First we prove (m is tangent to λ) =⇒ (m ⊥ OA). Suppose m is tangent to λ at A but not
perpendicular to OA. Let OB be the perpendicular to m through O, with B on m. Construct point C on m
such that BA = BC; then we have that △OBA ∼= △OBC by SAS, using OB = OB, ∠OBA = ∠OBC =
90◦, and BA = BC. Therefore OC = OA and hence C is on λ. But this means that m intersects λ at two
points, which is a contradiction.
Now we prove (m ⊥ OA) =⇒ (m is tangent to λ). Suppose m passes through A on λ such that m ⊥
OA. If m also passed through B on λ, then △AOB would be an isosceles triangle since AO, BO are
radii of λ. Therefore ∠ABO = ∠BAO = 90◦, i.e. △AOB is a triangle with two right angles, which is a
contradiction. □

Notice that, given point O and line m, the perpendicular OA from O to m (with A on m) is the shortest
distance from O to m, therefore the locus of points of distance exactly OA from O should line entirely on
one side of m. This is essentially the idea of the above proof.

Theorem 22. Let AB be a chord of circle λ with center O. Then O lies on the perpendicular bisector of AB.
Moreover, if C is on AB, then C bisects AB if and only if OC ⊥ AB.

Proof. Let m be the perpendicular bisector of AB. The center O of λ is equidistant from A, B by the definition
of a circle, therefore by Theorem 14, O must be on m. Let m intersect AB at D. We then have that D is the
midpoint of AB and also the foot of the perpendicular from O to AB.
Then if C bisects AB, C lies on the perpendicular bisector m of AB, which passes through O, thus OC ⊥ AB.
Lastly if OC ⊥ AB, then because there is only one perpendicular to AB through O, we must have C = D
and hence C is the midpoint of AB. □

Theorem 23. Let ω1, ω2 be circles with centers at points O1, O2 that intersect at points A, B. Then AB ⊥ O1O2.

Proof. Let l be the perpendicular bisector of AB. By the previous theorem,
l contains both centers: O1 ∈ l, O2 ∈ l. Thus, l = O1O2, so O1O2 is the
perpendicaulr bisector of AB; in particular, they are perpendicular. □
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Theorem 24. Let
omega1, ω2 be circles that are both tangent to line m at point A. Then these two circles have only one common
point, A. Such circles are called tangent.



Proof. By Theorem 20, radiuses O1A and O2A are both perpendicular to m at A; since there can only be
one perpendicular line to m at given point, it means that O1, O2, and A are on the same line, and that m is
perpendicular to O1O2 at A.

Now, suppose, by contradiction, that ω1, ω2 intersect at point B ∕= A. Then by the previous theorem,
AB ⊥ O1O2, therefore both AB and m are perpendicular to O1O2 through A. We must therefore have
that B is on m, but m is tangent to ω1 through A, thus has only one intersection with ω1, which is a
contradiction. □

ARCS AND ANGLES

Consider a circle λ with center O, and an angle formed by two rays from O. Then these two rays intersect
the circle at points A, B, and the portion of the circle contained inside this angle is called the arc subtended
by ∠AOB.

Theorem 25. Let A, B, C be on circle λ with center O. Then ∠ACB = 1
2∠AOB. The angle ∠ACB is said to

be inscribed in λ.
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Proof. There are actually a few cases to consider here, since C may be
positioned such that O is inside, outside, or on the angle ∠ACB. We will
prove the first case here, which is pictured on the left.
Case 1. Draw in segment OC. Denote m∠A = x, m∠B = y. Since △AOC
is isosceles, m∠AC) = x; similarly m∠BCO = y, so m∠ACB = x + y,
and m∠AOC = 180◦ − 2x, m∠BOC = 180◦ − 2y. Therefore, m∠AOC +
m∠BOC = 360◦ − 2(x+ y). This implies m∠AOB = 2(x+ y). □

As a result of Theorem 25, we get that any triangle △ABC on λ where AB is a diameter must be a right
triangle, since the angle ∠ACB has half the measure of angle ∠AOB, which is 180◦.
The idea captured by the concept of an arc and Theorem 25 is that there is a fundamental relationship
between angles and arcs of circles, and that the angle 360◦ can be thought of as a full circle around a point.

HOMEWORK

1. Prove that, given a segment AB, there is a unique circle with diameter AB.

2. Given lines
←→
AB‖

←→
CD such that AD, BC intersect at E and AE = ED, prove that BE = EC.

3. Prove that if a diameter of circle λ is a radius of circle ω, then λ, ω are tangent.
4. Complete the proof of Theorem 25 by proving the cases where O is not inside the angle ∠ACB.

[Hint: for one of the cases, you may need to write ∠ACB as the difference of two angles.]
5. Prove the converse of Theorem 25: namely, if λ is a circle centered at O and A, B, are on λ, and

there is a point C such that m∠ACB = 1
2m∠AOB, then C lies on λ. [Hint: we need to prove that

OC = OA; consider using a proof by contradiction, using Theorem 12.]
6. Let AB, CD both have midpoint E. Prove that ACBD is a parallelogram.
7. Given points A, B, C such that AB = AC, complete a straightedge-compass construction of a rhom-

bus ABDC.
8. Prove that, given two distinct points A, B on circle λ which are on the same side of diameter CD of

λ, that CB ∕= CA.
9. Given triangle △ABC, complete a straightedge-compass construction of a circle that passes through

A, B, C. Deduce that given any three points A, B, C that form a triangle (i.e. are not on the same
line), there exists a unique circle through these points.

10. Let AB, CD both have midpoint E and let F , G be points such that BECF and AEDG are parallel-
ograms. Prove that E is the midpoint of FG.


