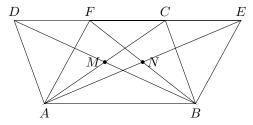

1. Homework


- **1.** Let A, B, C, D be points on circle ω that form a quadrilateral. Prove that $m \angle ABC + m \angle ADC$. We call such a quadrilateral a cyclic quadrilateral: it is inscribed in a circle.
- **2.** Let A, B, C be on a circle centered at O such that $\angle AOB \cong \angle BOC \cong \angle COA$. Prove that $\triangle ABC$ is an equilateral triangle.
- **3.** Given points A, B, what is the locus of points C such that $m \angle ACB = x^{\circ}$ for some number x? (Assume 0 < x < 180)
- 4. Let λ be a circle whose center is inside circle ω such that λ , ω intersect at points P, Q. Let \overline{AB} be a diameter of λ such that A, B are on λ and inside ω ; then, let \overrightarrow{PA} and \overrightarrow{PB} intersect ω at points X, Y respectively. Prove that \overline{XY} is a diameter of ω .

5. Let $\triangle ABC$ and $\triangle ADC$ be right triangles such that A, B, C, D lie on a circle and $m \angle BAC = 90^{\circ}$. Prove that ABCD is a rectangle.

- 6. Given a line segment \overline{AB} such that AB = 1, construct C on \overrightarrow{AB} such that:
 - (a) $AC = \frac{1}{4}$
 - (b) $AC = \frac{1}{3}$
 - (c) $AC = \frac{1}{6}$
 - (d) $AC = \frac{1}{5}$
 - (e) $AC = \sqrt{2}$
 - (f) $AC = \sqrt{3}$
 - (g) $AC = \sqrt{5}$
 - (h) $AC = \sqrt{7}$
- 7. Let ABCD and ABEF be parallelograms such that E, F are on the line \overrightarrow{CD} ; let the diagonals \overline{AC} , \overline{BD} intersect at M and $\overline{AE}, \overline{BF}$ intersect at N. Prove that $\overline{MN} \parallel \overline{AB}$.

