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1. Triangle inequalities

In this section, we use previous results about triangles to prove two important inequalities which hold for
any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are also
equal (Theorem 9). The next theorem extends this result: in a triangle, if one angle is bigger than another,
the side opposite the bigger angle must be longer than the one opposite the smaller angle.

Theorem 10. In 4ABC, if m∠A > m∠C, then we must have BC > AB.

Proof. Assume not. Then either BC = AB or BC < AB.
But if BC = AB, then 4ABC is isosceles, so by Theorem 9, m∠A =

m∠C as base angles, which gives a contradiction.
Now assume BC < AB, find the point M on AB so that BM = BC,

and draw the line MC. Then 4MBC is isosceles, with apex at B.
Hence m∠BMC = m∠MCB. On the other hand, by Problem 5, we
have m∠BMC > m∠A, and by Axiom 3, we have m∠C = m∠ACM +
m∠MCB > m∠MCB, so

m∠C > m∠MCB = m∠BMC > m∠A

so we have reached a contradiction.
Thus, assumptions BC = AB or BC < AB both lead to a contradiction.

Therefore, the only possibility is that BC > AB.
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The converse of the previous theorem is also true: opposite a longer side, there must be a larger angle.The
proof is left as an exercise.

Theorem 11. In 4ABC, if BC > AB, then we must have m∠A > m∠C.

The following theorem doesn’t quite say that a straight line is the shortest distance between two points,
but it says something along these lines. This result is used throughout much of mathematics, and is referred
to as “the triangle inequality”.

Theorem 12 (The triangle inequality). In 4ABC, we have AB + BC > AC.

Proof. Extend the line AB past B to the point D so that BD = BC, and join
the points C and D with a line so as to form the triangle ADC. Observe that
4BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD. It is immediate
that m∠DCB < m∠DCA. Looking at 4ADC, it follows that m∠D < m∠C; by
Theorem 10, this implies AD > AC. Our result now follows from AD = AB +BD
(Axiom 2) �
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2. Median, Altitude, Angle Bisector

There are three special lines that can be constructed from any vertex in any triangle; each line goes from
a vertex of the triangle to the line containing the triangle’s opposite side (altitudes may sometimes land on
the opposite side outside of the triangle).
Given a triangle 4ABC,

• The altitude from A is the line through A perpendicular to
←→
BC;

• The median from A is the line from A to the midpoint D of BC;

• The angle bisector from A is the line
←→
AE such that ∠BAE ∼= ∠CAE. Here we let E denote the

intersection of the angle bisector with BC.

For general triangle, all three lines are different. However, it turns out that in an isosceles triangle, they
coincide.



Theorem 13. If B is the apex of the isosceles triangle ABC, and BM is
the median, then BM is also the altitude, and is also the angle bisector,
from B.

Proof. Consider triangles 4ABM and 4CBM . Then AB = CB (by
definition of isosceles triangle), AM = CM (by definition of midpoint),
and m∠MAB = m∠MCB (by Theorem 9). Thus, by SAS axiom,
4ABM ∼= 4CBM . Therefore, m∠ABM = m∠CBM , so BM is the
angle bisector.
Also, m∠AMB = m∠CMB. On the other hand, m∠AMB +m∠CMB =
m∠AMC = 180

◦
. Thus, m∠AMB = m∠CMB = 180

◦
/2 = 90

◦
. �
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The following result is an analog of Theorem 13. For a point P and a line l, we define the distance
from P to l to be the length of the perpendicualr dropped from P to l (see problem 1 in the HW). We say
that point P is equidistant from two lines l, m if the distance from P to l is equal to the distance from P to m.

Theorem 14. For an angle ABC, the locus of points inside the angle which

are equidistant from the two sides BA, BC is the ray
−→
BD which is the angle

bisector of ∠ABC.

Proof of this theorem is given as a homework. B
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3. Constructions with straightedge and compass

Now that we know when two geometric objects are the same (via congruence), it makes sense to ask if
we can produce figures with specific properties of interest — for example, if we can reproduce a given angle
somewhere else so that the resulting angle is congruent to the original. Traditionally, such constructions
are done using straight-edge and compass: the straight-edge tool constructs lines and the compass tool
constructs circles. More precisely, it means that we allow the following basic operations:

• Draw (construct) a line through two given or previously constructed distinct points. (Recall that by
axiom 1, such a line is unique).

• Draw (construct) a circle with center at previously constructed point O and with radius equal to
distance between two previously constructed points B, C

• Construct the intersections point(s) of two previusly constructed lines, circles, or a circle and a line

All other constructions (e.g., draw a line parallel to a given one) must be done using these elementary
constructions only!!

Constructions of this form have been famous since mathematics in ancient Greece.
Here are some examples of constructions:

Example 1. Given any line segment AB and ray
−→
CD, one can construct a point E on

−→
CD such that

CE ∼= AB.

Construction. Construct a circle centered at C with

radius AB. Then this circle will intersect
−→
CD at the

desired point E. �
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Example 2. Given angle ∠AOB and ray
−→
CD, one

can construct an angle around
−→
CD that is congruent

to ∠AOB.

Construction. First construct point X on
−→
CD such

that CX ∼= OA. Then, construct a circle of ra-
dius OB centered at C and a circle of radius AB
centered at X. Let Y be the intersection of these
circles; then 4XCY ∼= 4AOB by SSS and hence
∠XCY ∼= ∠AOB. �
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4. Homework

1. (Midline!) There is another special line of a triangle, though it’s less common and generally less
useful. But, here is a problem about it anyways.
(a) Given line segments OA and OB and midpoint D of OA, prove that a point E on OB is the

midpoint of OB if and only if DE ‖ AB.
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(b) Given triangle 4ABC, let D, E be the midpoints of sides AB, AC respectively. Prove that
DE ‖ BC and DE = 1

2BC. (The line segment DE is called the midline of the triangle from A.)

(c) Given a triangle 4ABC and point D on AC, prove that the midlines of 4ABD and 4CBD
are parallel.

2. (Congruence Juggling) There will be a lot of triangles in this problem, many more than you are given.
You’re going to have to make them yourself. Good luck!
(a) Let 4ABC be a right triangle with right angle ∠A, and let D be the midpoint of BC. Prove

that AD = 1
2BC.

(b) Prove Theorem 14. [If you happen to know hypotenuse-leg congruence, try to find a proof
without using it.]

3. (Circumcenter & Incenter) In this problem you will prove that a triangle’s perpendicular bisectors all
intersect at a point, and a triangle’s angle bisectors all intersect at a point. These points have special
names, but I will not tell you why (until next week)! Have fun!
(a) Let l1, l2 be the perpendicular bisectors of side AB and BC respectively of 4ABC, and let F

be the intersection point of l1 and l2. Prove that then F also lies on the perpendicular bisector
of the side BC. [Hint: use Theorem 13.]

(b) Let the angle bisectors from B and C in the triangle 4ABC intersect each other at point F .

Prove that
←→
AF is the third angle bisector of 4ABC. [Hint: use Theorem 14]



4. (Point to Line) Suppose you want to know how far a point is from a line. How would you figure
this out? In this problem you will prove both that the perpendicular from a point to a line is the
shortest distance from that point to the line, and that you can construct such a perpendicular with
straightedge and compass.
(a) Let P be a point not on line l, and A ∈ l be the base of perpendicular from P to l: AP ⊥ l.

Prove that for any other point B on l, PB > PA (“perpendicular is the shortest distance”).
Note: you can not use Pythagorean theorem as we have not proved it yet; instead, try using
Theorem 11.

(b) The following method explains how one can find the midpoint of a segment AB using a ruler
and compass:
• Choose radius r (it should be large enough) and draw circles of radius r with centers at A

and B.

• Denote the intersection points of these circles by P and Q. Draw a line
←→
PQ.

• Let M be the intersection point of
←→
PQ and

←→
AB. Then M is the midpoint of AB.
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Can you justify this method, i.e., prove that so constructed point will indeed be the midpoint of
AB? You can use the defining property of the circle: for a circle of radius r, the distance from
any point on this circle to the center is exactly r. [Hint: find some isosceles triangles!]

(c) Given a point P and a line l, construct the perpendicular to l through P . [Hint: a circle centered
at P may help.]

5. (Orthocenter) In this problem, you will work with the altitudes of a triangle. It is more of a guided
proof than the other problems, which basically means it looks longer but is less work. Of course, if
you don’t read the problems carefully, then you wouldn’t know that, but if you’re reading this right
now then you do. Anyways, here you go.
Let 4ABC be isosceles with AB ∼= AC. Let the altitudes from B and C intersect their opposite legs
at the points D and E respectively, and let BD, CE intersect at F .
(a) Prove ∠EBF ∼= ∠DCF
(b) Prove 4DBC ∼= 4ECB
(c) Prove 4DCF ∼= 4EBF
(d) Prove 4AEF ∼= 4ADF

(e) Prove that
←→
AF is the third altitude of 4ABC.


