Math 7

Solving Quadratic Equations. Quadratic Formula.

We can use completing the square to derive a general formula to solve quadratic equations $ax^2 + bx + c = 0$

Here is how it works

If you complete the square for the general equation $ax^2 + bx + c = 0$, you can derive the quadratic formula.

Step 1 Write $ax^2 + bx + c = 0$ so the coefficient of x^2 is 1.

$$ax^{2} + bx + c = 0$$

 $x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$ Divide each side by a.

Step 2 Complete the square.

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$
Subtract $\frac{c}{a}$ from each side.

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$
Add $\left(\frac{b}{2a}\right)^{2}$ to each side.

$$\left(x + \frac{b}{2a}\right)^{2} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$$
Write the left side as a square.

$$\left(x + \frac{b}{2a}\right)^{2} = -\frac{4ac}{4a^{2}} + \frac{b^{2}}{4a^{2}}$$
Multiply $-\frac{c}{a}$ by $\frac{4a}{4a}$ to get like denominators.

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$
Simplify the right side.

Step 3 Solve the equation for x.

Take square roots of each side.

This step uses the property
$$\sqrt{\frac{m}{n}} - \frac{\sqrt{m}}{\sqrt{n}}$$
,
 $x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{2a}}$ Simplify the right side.
 $x = -\frac{b}{2a} \pm \sqrt{\frac{b^2 - 4ac}{2a}}$ Subtract $\frac{b}{2a}$ from each side.
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Simplify.

 $\sqrt{\left(x+\frac{b}{2a}\right)^2}=\pm\sqrt{\frac{b^2-4ac}{4a^2}}$

Quadratic Formula

If $ax^2 + bx + c = 0$, and $a \neq 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 1. Suppose $2x^2 + 3x - 5 = 0$. Then a = 2, b = 3, and c = -5. Therefore

$$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(2)(-5)}}{2(2)}$$

Example 2.

What are the solutions of $x^2 - 8 = 2x$? Use the quadratic formula.

$$x^{2} - 2x - 8 = 0$$
Write the equation in standard form.

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
Use the quadratic formula.

$$x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(-8)}}{2(1)}$$
Substitute 1 for *a*, -2 for *b*, and -8 for *c*.

$$x = \frac{2 \pm \sqrt{36}}{2}$$
Simplify.

$$x = \frac{2 \pm 6}{2}$$
or
$$x = \frac{2 - 6}{2}$$
Write as two equations.

$$x = 4$$
or
$$x = -2$$
Simplify.

Quadratic equations can have two, one, or no real-number solutions. Before you solve a quadratic equation, you can determine how many real-number solutions it has by using the discriminant. The **discriminant** is the expression under the radical sign in the quadratic formula.

Using the discriminant

Discriminant	b ² – 4ac > 0	$b^2 - 4ac = 0$	b ² – 4ac < 0
Example	$x^{2} - 6x + 7 = 0$ The discriminant is $(-6)^{2} - 4(1)(7) = 8,$ which is positive.	$x^{2} - 6x + 9 = 0$ The discriminant is $(-6)^{2} - 4(1)(9) = 0.$	$x^2 - 6x + 11 = 0$ The discriminant is $(-6)^2 - 4(1)(11) = -8$, which is negative.
Number of Solutions	There are two real- number solutions.	There is one real- number solution.	There are no real- number solutions.

Practice.

1. Use the quadratics formula to solve each equation.

$2x^2 + 5x + 3 = 0$	$x^2 + 8x + 11 = 0$
$5x^2 + 16x - 84 = 0$	$5x^2 + 12x - 2 = 0$
$4x^2 + 7x - 15 = 0$	$2x^2 - 16x = -25$
$3x^2 - 41x = -110$	$8x^2-7x-5=0$
$18x^2 - 45x - 50 = 0$	$6x^2 + 9x = 32$
$3x^2 + 44x = -96$	$3x^2 + 5x = 4$
$3x^2 + 19x = 154$	
$2x^2 - x - 120 = 0$	
$5x^2 - 47x = 156$	

2. A football player punts a ball. The path of the ball can be modeled by the equation $y = -0.004x^2 + x + 2.5$, where x is the horizontal distance, in feet, the ball travels and y is the height, in feet, of the ball. How far from the football player will the ball land? Round to the nearest tenth of a foot.

3. Which method would you chose to solve each equation. Justify your reasoning. Solve.

$$x^{2} + 4x - 15 = 0$$

$$9x^{2} - 49 = 0$$

$$4x^{2} - 41x = 73$$

$$3x^{2} - 7x + 3 = 0$$

$$x^{2} + 4x - 60 = 0$$

$$-4x^{2} + 8x + 1 = 0$$

4. Find the number of real-number solutions of each equation.

$$x^{2} - 2x + 3 = 0$$

$$x^{2} + 7x - 5 = 0$$

$$x^{2} + 3x + 11 = 0$$

$$x^{2} - 15 = 0$$

$$x^{2} + 2x = 0$$

$$9x^{2} + 12x + 4 = 0$$

5. Solve equations. Use any method.

$$3w^{2} = 48$$
$$3x^{2} + 2x - 4 = 0$$
$$6g^{2} - 18 = 0$$
$$3p^{2} + 4p = 10$$
$$k^{2} - 4k = -4$$
$$13r^{2} - 117 = 0$$

- 6. You operate a dog-walking service. You have 50 customers per week when you charge \$14 per walk. For each \$1 decrease in your fee for walking a dog, you get 5 more customers per week. Can you ever earn \$750 in a week? Explain.
 - What quadratic equation in standard form can you use to model this situation?
 - How can the discriminant of the equation help you solve the problem?
- 7. Your school wants to take out an ad in the paper congratulating the basketball team on a successful season, as shown below. The area of the photo will be half the area of the entire ad. What is the value of x?

- 8. Find the discriminant and the solution of each equation in parts (a)-(c).
 - **a.** $x^2 6x + 5 = 0$
 - **b.** $x^2 + x 20 = 0$
 - **c.** $2x^2 7x 3 = 0$
 - d. Reasoning When the discriminant is a perfect square, are the solutions rational or irrational? Explain.
- 9. The solutions of any quadratic equation $ax^2 + bx + c = 0$ are

$$\frac{-b+\sqrt{b^2-4ac}}{2a} \text{ and } \frac{-b-\sqrt{b^2-4ac}}{2a}.$$

- a) Find a formula for the sum of the solutions.
- b) One solution of $2x^2 + 3x 104 = 0$ is -8. Use the formula you found in part (a) to find the second solution.
- 10. For each condition given, tell whether $ax^2 + bx + c = 0$ will always, sometimes, or never have two solutions.
 - a) $b^2 < 4ac$
 - b) $b^2 = 0$
 - c) ac < 0