## Math 7

## Solving Quadratic Equations. Completing the square.

Recall, that we can solve quadratic equations of the form  $x^2 = D$  or  $(x - h)^2 = D$  by taking square root of both sides of the equation and getting  $x = \pm \sqrt{D}$  and  $x - h = \pm \sqrt{D}$  (thus  $x = \pm \sqrt{D} + h$ ) respectively.

Let see how this can help us solve quadratic equations in their general standard form  $ax^2 + bx + c = 0$ 

Let first see how we can use graphic (or geometric) representation of quadratic expressions to see how they can be changed into a prefect squares.



In general, you can change the expression  $x^2 + bx$  into a perfect-square trinomial by adding  $\left(\frac{b}{2}\right)^2$  to  $x^2 + bx$ . Tis process is called **completing the square**. The process is the same whether *b* is positive or negative.

**Example 1.** What is the value of c such that  $x^2 - 16x + c$  is a perfect square?

The value of *b* is -16. The term to add to  $x^2 - 16x$  is  $\left(-\frac{16}{2}\right)^2$ , or 64. So, c = 64.

In general, to solve the equation in the form  $x^2 + bx + c = 0$ , first subtract constant term 0 from each side of the equation.

Example 2. Solve  $x^2 - 14x + 16 = 0$ .  $x^2 - 14x + 16 = 0$   $x^2 - 14x = -16$ Now, we add  $\left(-\frac{14}{2}\right)^2 = 49$  to each side  $x^2 - 14x + 49 = 16 + 49$   $(x - 7)^2 = 33$   $x - 7 = \pm\sqrt{33}$  $x = \pm\sqrt{33} + 7$ 

\*In case if  $a \neq 0$  in  $ax^2 + bx + c = 0$  we first divide both side of the equations by a and then proceed as described above.

## Practice.

1. Find the value of c such that each expression is a perfect square trinomial.

$$x^{2} + 18x + c$$

$$z^{2} + 22z + c$$

$$p^{2} - 30p + c$$

$$k^{2} - 5k + c$$

$$g^{2} + 17g + c$$

$$a^{2} - 4g + c$$

2. Solve each equation by comleting the square.

| $g^2 + 7g = 144$     | $4a^2 - 8a = 24$      |
|----------------------|-----------------------|
| $r^2-4r=30$          | $2y^2 - 8y - 10 = 0$  |
| $m^2 + 16m = -59$    | $5n^2 - 3n - 15 = 10$ |
| $a^2 - 2a - 35 = 0$  | $4w^2 + 12w - 44 = 0$ |
| $m^2 + 12m + 19 = 0$ | $3r^2 + 18r = 21$     |
| $w^2 - 14w + 13 = 0$ | $2v^2 - 10v - 20 = 8$ |

- 3. A park is installing a rectangular reflecting pool surrounded by a concrete walkway of uniform width. The reflecting pool will measure 42 ft by 26 ft. There is enough concrete to cover 460 ft<sup>2</sup> for the walkway. What is the maximum width x of the walkway?
  - How can drawing a diagram help you solve this problem?
  - How can you write an expression in terms of x for the area of the walkway?
- 4. A school is fencing in a rectangular area for a playground. It plans to enclose the playground using fencing on three sides, as shown below. The school has budgeted enough money for 75 ft of fencing material and would like to make a playground with an area of 600 ft<sup>2</sup>.



- a) Let w represent the width of the playground. Write an expression in terms of w for the length of the playground.
- b) Write and solve an equation to find the width w. Round to the nearest tenth of a foot.
- c) What should the length of the playground be?

- 5. Solve each equation. If there is no real number solution, write *no solution*.
  - $q^{2} + 3q + 1 = 0$   $s^{2} + 5s = -11$   $w^{2} + 7w - 40 = 0$   $z^{2} - 8z = -13$   $4p^{2} - 40p + 56 = 0$   $m^{2} + 4m + 13 = -8$   $2p^{2} - 15p + 8 = 43$   $3r^{2} - 27r = 3$  $s^{2} + 9s + 20 = 0$
- 6. A classmate was completing the square to solve  $4x^2 + 10x = 8$ . For her first step she wrote  $4x^2 + 10x + 25 = 8 + 25$ . What was her error?
- 7. Explain why completing the square is a better strategy for solving  $x^2 7x 9 = 0$  than graphing or factoring.