Math 7. Solving Simple Quadratic Equations. Factoring to solve Quadratic Equations.

Standard Form of a Quadratic Equation

A quadratic equation is an equation that can be written in the form $ax^2 + bx + c = 0$, where $a \neq 0$. This form is called the **standard form** of a quadratic equation.

You can solve equations of the form $x^2 = k$ by finding the square roots of each side. For example, the solutions of $x^2 = 81$ are $\pm \sqrt{81}$, or ± 9 .

Example 1. What are the solutions of $3x^2 - 75 = 0$?

$$3x^{2} - 75 = 0$$

$$3x^{2} = 75$$

$$x^{2} = 25$$

$$x = \pm\sqrt{25}$$

$$x = \pm 5$$

Practice.

1. Solve Each equation below

$x^2 - 9 = 0$	$x^2 + 7 = 0$	$n^2 = 81$	a ² = 324
$3x^2 = 0$	$3x^2 - 12 = 0$	$k^2 - 196 = 0$	$r^2 + 49 = 49$
$x^2 + 4 = 0$	$\frac{1}{3}x^2 - 3 = 0$	$w^2 - 36 = -64$	$4g^2 = 25$
$\frac{1}{2}x^2 + 1 = 0$	$x^2 + 5 = 5$	$64b^2 = 16$	$5q^2-20=0$
$\frac{2}{1}$	$v^2 + 25 = 0$	$144 - p^2 = 0$	$2r^2-32=0$
$\frac{1}{4}x^{-} - 1 = 0$	$x^{-} + 23 = 0$	$3a^2 + 12 = 0$	$5z^2 - 45 = 0$
$x^2 - 10 = -10$	$2x^2 - 18 = 0$		

- 2. Write and solve an equation in the form $ax^2 + c = 0$, where $a \neq 0$, that satisfies the given condition:
 - a) The equation has no solution
 - b) The equation has exactly one solution
 - c) The equation has two solutions
- 3. Solve the equation $(x 7)^2 = 0$

Solving by Factoring

Firs, lets recall that if ab = a, the a = 0, or b = 0.

For example, if (x + 5)(x - 7) = 0, then (x + 5) = 0, or (x - 7) = 0, which will lead to the fact that x = -5, or x = 7.

Example 2. What are the solutions of the equation $3y^2 - 17y + 24 = 0$?

By factoring the quadratic expression, we will get (3x - 8)(x - 3) = 0, which means that (3x - 8) = 0, or (x - 3) = 0, thus x = 8/3, or x = 3.

Practice.

4. Solve by factoring

$x^2 + 11x + 10 = 0$	$x^2 + 13x = -42$
$g^2 + 4g - 32 = 0$	$p^2 - 4p = 21$
$s^2 - 14s + 45 = 0$	$c^{2} = 5c$
$2z^2 - 21z - 36 = 0$	$2w^2 - 11w = -12$
$3q^2+q-14=0$	$3h^2 + 17h = -10$
$4m^2 - 27m - 40 = 0$	$9b^2 = 16$

- 5. A box shaped like a rectangular prism has a volume of 280 in³. Its dimensions are 4 in. by (n + 2) in. by (n + s) in. Find n.
- 6. You are knitting a blanket. You want the area of the blanket to be 24 ft². You want the length of the blanket to be 2 ft longer than its width. What should the dimensions of the blanket be?

- 7. You are building a rectangular deck. The area of the deck should be 250 ft². You want the length of the deck to be 5 ft longer than twice its width. What the dimensions of the deck should be?
- 8. Write each equation in the standard form. Then solve.

 $7n^2 + 16n + 15 = 2n^2 + 3$ $4a^2 + 3a = 3a^2 - 4a + 18$

9. You have a rectangular koi pond that measures 6 ft by 8 ft. You have enough concrete to cover 72 ft² for a walkway, as shown in the diagram. What should the width of the walkway be?

- How can you write the outer dimensions of the walkway?
- How can you represent the total area of the walkway and pond in two ways?
 - 10. How many solutions does an equation of the form $x^2 k^2 = 0$ have? Explain.
 - 11. You throw a softball into the air with an initial upward velocity of 38 ft/s and an initial height of 5 ft.
 - a) Use the vertical motion model to write an equation that gives the ball's height h, in feet, at time t, in seconds.
 - b) The ball's height is Oft when it is on the ground. Solve the equation you wrote in part (a) for h = 0 to find when the ball lands.
 - 12. Solve each cubic equation.

 $x^3 - 10x^2 + 24x = 0$

 $x^3 - 5x^2 + 4x = 0$

 $3x^3 - 9x^2 = 0$

- 13. Find an equation that has the given numbers as solutions. For example, 4 and -3 are solutions of $x^2 x 12 = 0$.
- a) -5*,* 8
- b) 3*,* -2
- c) 1/2, -10
- d) 2/3,-5/7

14. Solve (factor by grouping).

 $x^3 + 5x^2 - x - 5 = 0$

 $x^3 + x^2 - 4x - 4 = 0$

 $x^3 + 2x^2 - 9x - 18 = 0$