MATH 7 ASSIGNMENT 23: EUCLIDEAN GEOMETRY IV

APR 19, 2020

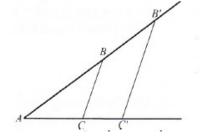
1. Similar triangles

We say that triangles $\triangle ABC$ and $\triangle A'B'C'$ are similar with coefficient k if $m \angle A = m \angle A', m \angle B = m \angle B', \ \angle C = \angle C'$ and

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC} = k.$$

We will use notation $\triangle ABC \sim \triangle A'B'C'$.

Theorem 13. Consider a triangle $\triangle ABC$ and let $B' \in AB$, $C' \in \overrightarrow{AC}$ be such that lines \overrightarrow{BC} and $\overrightarrow{B'C'}$ are parallel. Then $\triangle ABC \sim \triangle A'B'C'$.



Theorem 14. For any triangle $\triangle ABC$ and a real number k > 0, there exists a triangle $\triangle A'B'C'$ similar to $\triangle ABC$ with coefficient k.

Theorem 15 (Similarity via (AA)). Let $\triangle ABC$, $\triangle A'B'C'$ be such that $m \angle A = m \angle A'$, $m \angle B = m \angle B'$. Then these triangles are similar.

Proof. Let $k = \frac{A'B'}{AB}$. Construct a triangle $\triangle A''B''C''$ which is similar to $\triangle ABC$ with coefficient k. Then A'B' = A''B'', and $m \angle A = m \angle A' = m \angle A''$, $m \angle B = m \angle B' = m \angle B''$. Thus, by (ASA), $\triangle A'B'C' \cong \triangle A''B''C''$.

Theorem 16 (Similarity via (SAS)). Let $\triangle ABC$, $\triangle A'B'C'$ be such that $\angle A = \angle A'$, $\frac{A'B'}{AB} = \frac{A'C'}{AC}$. Then these triangles are similar.

Theorem 17 (Similarity via (SSS)). Let $\triangle ABC$, $\triangle A'B'C'$ be such that

$$\frac{A'B'}{AB} = \frac{A'C'}{AC} = \frac{B'C'}{BC}$$

Then these triangles are similar.

One of the most important applications of the theory of similar triangles is to the study of right triangles and the Pythagorean theorem. A *right* triangle is a triangle in which one of the angles is a right angle. A *hypotenuse* is the side opposing the right angle; the two other sides are called legs.

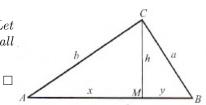
Theorem 18. Let $\triangle ABC$ be a right triangle, with $\angle C$ being the right angle. Let CM be the altitude of angle C. Then triangles $\triangle ABC$, $\triangle ACM$, $\triangle CBM$ are all similar.

Proof. It immediately follows from (AA) similarity rule.

This theorem immediately implies a number of important relations between various lengths in these triangles. We will give one of them. Denote for brevity a = BC, b = AC, c = AB, x = AM, y = MB, h = CM. Then we have x : h = b : a, y : h = a : b, so

$$\frac{x}{h} \times \frac{y}{h} = 1$$

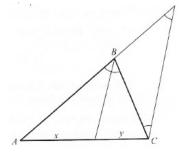
or $xy = h^2$.



Homework

In the problems about constructing something with a ruler and compass, the ruler can only be used for drawing straight lines through two given points; you can not use it to measure distances. You can freely use previous results and constructions without repeating all the steps.

- **1.** Prove theorem 16.
- 2. Use the drawing of the rectangular triangle in the previous page to prove that:
 - (a) $cx = b^2$
 - (b) $cy = a^2$
 - (c) Prove Pithagoras' theorem: $a^2 + b^2 = c^2$
- **3.** In a triangle $\triangle ABC$, let *D* be midpoint of side *BC*, *E* midpoint of side *AC*, *F* midpoint of side *AB*. Prove that $\triangle DEF$ is similar to triangle $\triangle ABC$ with coefficient 1/2.
- 4. Use the following figure to prove that an angle bisector in a triangle $\triangle ABC$ divides the opposite side in the same proportion as the two adjoining sides: $\frac{x}{y} = \frac{BA}{BC}$.



5. Given an angle $\angle POQ$ and a point M inside it, construct points A, B on the sides of this angle so that AB goes through M and $\triangle AOB$ is isosceles. [Hint: first construct any isosceles triangle with vertices on the sides of the given angle; then the required triangle must be similar to it.]

Extra Problems

- 6. Let ABCD be a trapezoid with bases AD = 9, BC = 6, such that the height (distance between the bases) is equal to 5. Let O be the intersection point of lines AB, CD.
 - (a) Show that triangles $\triangle OBC$, $\triangle OAD$ are similar and find the coefficient.
 - (b) Find the distance from O to AD (i.e., length of the perpendicular).
- 7. Given three line segments, of lenghts 1, x, y, construct the line segments of lenghts xy, x/y, using only ruler and compass.