MATH 7 ASSIGNMENT 9: THE TRIGONOMETRIC CIRCLE

NOV 17, 2019

Radians

Until now, we have been measuring angles in degrees, which are defined by saying that a full turn corresponds to 360° . An alternative way to measure angles is by radians, which are defined in the following way: given an angle α , it's measure in radians is the ratio of an arc of circumference with angle α by the radius of the circumference.

For example, the angle 360° corresponds to a full circle. Since the perimeter of a circle is $2\pi R$, dividing by R gives:

 $360^{\circ} \leftrightarrow 2\pi$ rad.

In the same way, half a circle corresponds to an angle of π radians. By similar arguments, we can translate all the angles that appeared in our previous table:

Trigonometric Functions									
Function	Notation	Definition	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$		
sine	$\sin(\alpha)$	opposite side hypotenuse	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1		
cosine	$\cos(\alpha)$	$\frac{\text{adjacent side}}{\text{hypotenuse}}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0		
tangent	$\tan(\alpha)$	opposite side adjacent side	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞		

Trigonometric Circle

A very useful tool in understanding the trigonometric functions is the *trigonometric circle* (see figure below): in order to find the sine and cosine of a positive angle α , we just have to "walk" around the circle a distance α , starting from the point (1,0) in anti clockwise direction. Then the coordinates of the point we arrive at are (cos α , sin α). For α negative, we define the sine and cosine in the same way, but walking in the clockwise direction.

FIGURE 1. Trigonometric circle: in order to find the sine and cosine of angle α , we just have to "walk" around the circle a distance α , starting from the point (1,0). Then the coordinates of the point we arrive at are $(\cos \alpha, \sin \alpha)$.

Graph of the Function Sin (x)

By looking at the values of sine as we go around the trigonometric circle, we find out a few facts like:

- $\sin 0 = \sin \pi = 0$
- $\sin x$ increases from 0 to $\frac{\pi}{2}$.
- At x = π/2, sin x reaches it s maximum value, 1.
 At x = 3π/2, sin x reaches it minimum value, -1.
- $\sin x + 2\pi = \sin x$.

We can see all of these facts clearly in the graph of the function $\sin x$:

FIGURE 2. Graph of Sine.

Homework

- 1. Draw a large trigonometric circle. Then, remembering that 2π corresponds to a full circle, find the points corresponding to (write the corresponding letter on the correct point)
 - (a) π

 - (b) $\frac{3\pi}{2}$ (c) $\frac{3\pi}{4}$
 - (d) $-\frac{5\pi}{4}$
 - (e) 11π
 - (f) -3π
 - (g) $\frac{25\pi}{3}$ (h) $-\frac{19\pi}{c}$
- 2. Now use your trigonometric circle and figure 1 to complete this table:

Point	Sine	Cosine
(a)	0	-1
(b)		
(c)		
(d)		
(e)		
(f)		
(g)		
(h)		

3. Using the trigonometric circle, check where appropriate:

x	$\sin x \ge \sqrt{3}/2$	$1/2 < \sin x < \sqrt{3}/2$	$-\sqrt{2}/2 < \sin x \le 1/2$	$\sin x \le -\sqrt{2}/2$
$\pi/7$			\checkmark	
$2\pi/7$				
$-3\pi/5$				
$5\pi/8$				
$25\pi/9$				

- 4. Using the trigonometric circle, show that $\cos x = \sin (x + \pi/2)$ for any angle x. Then use this fact and the graph of the Sine function (figure 2) to construct (draw) the graph of the Cosine function.
- 5. Find all real numbers x such that $(\sin x)^2 = 3/4$