GRAPHING QUADRATIC POLYNOMIAL FUNCTIONS

15.1 Shape of quadratic graphs and end behavior of polynomial functions

Recall: End behavior of a polynomial. Axes of Symmetry

We have two cases x becomes larger, and larger in the positive direction, denoted by $x \to \infty$, and x becomes larger, and larger in the negative direction, denoted by $x \to -\infty$

Examples

- x^2 , $-x^2$, x^4 , $-x^4$ (identify points/axes of symmetry)
- x^3 , $-x^3$, x^5 , $-x^5$ (identify points/axes of symmetry)

In general, the end behavior is determined by the term that contains the highest power of x, called the leading term. Why? Because when x is large, all the other terms are small compared to the leading term.

What happens in the middle of the graph of a quadratic function?

In some locations the graph behavior changes. A turning point is a point at which the function values change from increasing to decreasing or decreasing to increasing.

Method 1

Due to the symmetry of the parabola, the turning point lies halfway between the x-intercepts. As a consequence, if there is only one x-intercept, then the x-intercept is exactly the turning point.

Examples:

$$x^2$$
, $x^2 + 4x + 4$, $x^2 + 3x + 2$

Method 2

The first method works if the x-intercepts exist. However, if we re-write the quadratic polynomial function as we did in the "completing the square" we have

$$y = f(x) = a(x - h)^2 + k$$
, and its turning point is $(x, y) = (h, k)$

or more precisely since

$$\left(x+\frac{b}{2a}\right)^2=\frac{D}{4a^2}$$
 , and its turning point is $(x,y)=\left(-\frac{b}{2a},\frac{D}{4a^2}\right)$

Examples:

$$x^2$$
, $x^2 + 2x + 4$, $x^2 + 3x + 2$

Axis of symmetry

The axis of symmetry is a useful line to find since it gives the x-coordinate of the vertex of the parabola which is its turning point discussed above. We can complete the square on the general quadratic polynomial function and thereby obtain a general formula for the axis of symmetry and hence the x-coordinate for the vertex.

$$\left(x+\frac{b}{2a}\right)^2=\frac{D}{4a^2}$$
 , and its vertex is $(x,y)=\left(-\frac{b}{2a},\frac{D}{4a^2}\right)$

This expression shows that the minimum (or maximum in the case when a is negative) occurs when the first bracket is zero, that is, when $x = -\frac{b}{2a}$.

15.2 Classwork

Given the polynomial functions

1.
$$f(x) = (x-1)(x+2)(x-3)$$
,

2.
$$f(x) = (x-4)(x+5)$$

3.
$$f(x) = (x-4)^2$$

express the function as a polynomial in general form and determine the leading term, degree, and its end behavior. Determine the turning point/ parabola vertex for the last two functions and try to sketch their graph.

15.3 Sketch a graph of a quadratic polynomial function using its zeroes

Find the roots:

$$y = f(x) = x^2 + x - 2$$

Find the roots of the polynomial function of second degree (that is, the zeros of the quadratic equation):

$$f(x) = (x+2)(x-1)$$

The roots are x-intercepts: (-2,0), (1,0).

Axis of symmetry and turning point:

Halfway between the x-intercepts:

$$x_t = -\frac{b}{2a} = -\frac{1}{2} = -0.5$$

$$\implies y_t = (-0.5)^2 - 0.5 - 2 = -0.25 - 2 = -2.25$$

End behavior:

$$x \to \infty \Longrightarrow f(x) \to \infty, f(x) > 0$$

$$x \to -\infty \Longrightarrow f(x) \to \infty, f(x) > 0$$

$\underline{}$	$-\infty$	-2	-0.5	+1	$+\infty$
(x+2)					
(x-1)					
f(x) = (x+2)(x-1)					

We take test points in these intervals to determine the signs.

For example, test point for

$$\begin{array}{cccc} (-\infty,-2) & : & x=-3 \\ (-2,-0.5) & : & x=-1 \\ (-0.5,1) & : & x=0 \\ (1,\infty) & : & x=2 \end{array}$$

Figure 15.1: Graph of f(x) = (x + 2)(x - 1)

15.4 Worked out examples

Examples for turning point/ parabola vertex:

$$x^2$$
, $x^2 + 4x + 4$, $x^2 + 3x + 2$

Method 1: Symmetry

- The x-intercept is found by letting y = f(x) = 0. So, $0 = x^2 \implies x = 0$. There is only one x-intercept, so that gives the x-coordinate of the turning point. To find the y-coordinate, substitute it into the quadratic equation. $f(0) = 0^2 \implies y = 0$. Thus, the turning point is (x, y) = (0, 0).
- $x^2 + 4x + 4 = (x+2)^2$ There is only one x-intercept, so that gives the x-coordinate of the turning point.
- $x^2 + 3x + 2 = (x+1)(x+2)$. So, there are two roots, thus two distinct x-intercepts: x = -1 or x = -2. To find the x-coordinate of the turning point, average the x-intercepts. So, $x_{tp} = \frac{(-1)+(-2)}{2} = -\frac{3}{2}$. To find its y-coordinate, substitute this value into the equation: $y_{tp} = \left(-\frac{3}{2}\right)^2 + 3\left(-\frac{3}{2}\right) + 2 = \frac{9}{4} \frac{9}{2} + 2 = -\frac{1}{4}$. Thus, the coordinates of the turning points are $(x, y) = \left(-\frac{3}{2}, -\frac{1}{4}\right)$.

Method 2: Completing to Square, Discriminant Formula

- For x^2 , if we complete the square, we obtain: $(x-0)^2+0$. So, its turning point is (x,y)=(0,0).
- For $x^2 + 3x + 2$, if we complete the square, we obtain: $y = x^2 + 3x + \left(\frac{3}{2}\right)^2 \left(\frac{3}{2}\right)^2 + 2 = \left(x + \frac{3}{2}\right)^2 \frac{9}{4} + 2 = \left[x \left(-\frac{3}{2}\right)\right]^2 \frac{1}{4}$. So, the turning point is $(x, y) = \left(-\frac{3}{2}, -\frac{1}{4}\right)$.

Example of using the zeroes to graph a quadratic polynomial function

x	$-\infty$	-3	-2	-1	-0.5	0	+1	+2	$+\infty$
(x+2)	$-\infty$	-1			+1.5			+4	$+\infty$
(x-1)	$-\infty$	-4	-3	-2	-1.5	-1	0	+1	$+\infty$
f(x) = (x+2)(x-1)	$+\infty$	+4	0	-2	-2.25	-2	0	+4	$+\infty$

15.5 Homework

- For what values of "b" has the polynomial function $x^2 + bx + 14$ no real numbers roots? exactly one root? two distinct real numbers roots?
- Solve the following inequalities using a table similar to one used for graphing quadratic functions:

1.
$$x^2 - x + 6 \ge 0$$

4.
$$x^2 + x > 0$$

$$2. \frac{2x+1}{x-5} \leq 0$$

5.
$$x^2 - 5x + 6 < 0$$

3.
$$x(x-2)(x+18) > 0$$

6.
$$|x^2 - x| > 1$$

• Sketch the graphs of the following functions and relations:

1.
$$x + y = 1$$

5.
$$|x+y|=4$$

2.
$$y = x^2 + x$$

6.
$$y = |x+1| - |x-1|$$

3.
$$y = x^2 - 5x + 6$$

7.
$$y = |x^2 - x|$$

4.
$$y = (x-2)(x+18)$$

$$8. \ x^2 + 4x + y^2 - 4y = 0$$