

CHAPTER 5______BASIC TRIGONOMETRIC RATIOS

5.1 Warm-Up:

- 1. $1+3+5+\cdots+(2k+1)=?$
- 2. In a set of five different numbers, which of the following operations can affect the median¹ of the numbers? Justify your answer. Operations : a) Increasing the smallest number only, b) Increasing the largest number only, c) Decreasing the largest number only, d) Decreasing the smallesr number only, e) Increasing each number by a constant, f) Multiplying each number with a constant

5.1.1 Measurements in the triangle

Trigonometry comes from "trigonon" which means in Greek "triangle" and "metron" which means "measure" and studies relationships involving lengths and angles of triangles. The trigonometric ratios are indeed special measurements of a right triangle. Let us follow the steps 3rd century BCE Greeks and take three nested triangles. They are all similar 2 (i.e. have the same shape) with the same angles but they are different sizes. Indeed the values of the following fractions/ratios2 are the same although the lengths of the sides of the triangles are different.

opposite side	a	3	adjacent side		b	4	opposite side		a		3
$\overline{\text{hypothenuse}} =$	$\frac{-}{c} =$	$\overline{5}$	hypothenuse	=	$\overline{c} =$	$\overline{5}$	adjacent side	=	\overline{b}	=	4

 $^{^{1}}$ Mean, median, and mode are three kinds of "averages". The mean is the number obtained after you add up all the numbers and then divide them by how many they are. The median is the middle value in the ordered list of numbers. The mode is the value that occurs most often. If no number is repeated, then there is no mode for the list.

²Euclid's "Elements" proves that if triangles are similar then the ratio of any chosen pair of sides stays the same, whatever the size of triangle. Most high-school textbooks do not prove this theorem, taking it as an additional postulate (often called the AAA Similarity Postulate). (Proof http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf Book VI, Proposition 4.)

The ratio of the opposite side of a right triangle to the hypotenuse is called the sine and denoted sin. The ratio of the adjacent side of a right triangle to the hypotenuse is called the cosine and denoted cos. Finally, the ratio of the opposite side to the adjacent side is called the tangent and denoted tan.

Connections:

 $tan(\alpha) = m_{BC}$, the tangent equals the slope of the hypotenuse BC

$$tan(\alpha) = \frac{\text{opposite side}}{\text{adjacent side}} = \frac{\text{opposite side}}{\text{hypotenuse}} \times \frac{\text{hypotenuse}}{\text{adjacent side}} = \frac{sin(\alpha)}{cos(\alpha)}$$

Trigonometric Functions									
Function	Notation	Definition	Acute Angle 3,4,5	0	30	45	60		
Sine	$\ sin(\alpha)$	$\frac{\text{opposite side}}{\text{hypotenuse}}$		0	$\left \begin{array}{c} \frac{1}{2} \end{array} \right $	$\left \frac{\sqrt{2}}{2} \right $	$\frac{\sqrt{3}}{2}$		
Cosine	$\ \cos(\alpha)$	$\frac{\text{adjacent side}}{\text{hypotenuse}}$		$\left \begin{array}{c} \frac{1}{2} \end{array} \right $	$\frac{\sqrt{3}}{2}$	$\left \frac{\sqrt{2}}{2} \right $	$\frac{1}{2}$		
Tangent	$\ tan(\alpha)$	opposite side adjacent side		0	$\left \begin{array}{c} \frac{1}{\sqrt{3}} \right $	1	$\sqrt{3}$		

Mnemonics: For the sine the numerator is $\sqrt{0}, \sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}$

The calculations for the 45-45-90 and for the 30-60-90 right triangles

The 30-60-90 triangle and its mirror reflection create together a 60-60-60 triangle of side equal to the hypothenuse.

What about other angles? It might be tempting to use for the expression sin(a + b) the sum sin(a) + sin(b), but this is completely wrong. Tables of values have been calculated for the sin, cos and tan of many angles.

Trigonometry is largely used in land surveying. When an observer looks at an object that is higher than the (eye of) the observer, the angle between the line of sight and the horizontal is called the angle of elevation. On the other hand, when the object is lower than the observer, the angle between the horizontal and the line of sight is called the angle of depression. These angles are always measured from the horizontal.

(a) Exercise 1: Using shadows to measure

(b) Exercise 2: Measure lengths despite obstacles

Land Surveying Problems

(c) Exercise 5: Angle of depression

5.1.2 Horizontal and vertical components of vectors : $\vec{v} = \vec{v_x} + \vec{v_y}$

If we know a vector \vec{v} and the angle it forms with the positive x-axis, OX then we can find out its vertical and horizontal components using the sine and cosine in scalar equations.:

the x-component of $\vec{v}: v_x = |v| \cdot cos(\alpha)$, the y-component of $\vec{v}: v_y = |v| \cdot sin(\alpha)$

If we know the components of a vector \vec{v} , we can determine the magnitude or length of the vector $|v| = \sqrt{v_x^2 + v_y^2}$. Considering the components as vectors on a line, the law for adding vectors says $\vec{v} = \vec{v_x} + \vec{v_y}$.

5.2 Problems

- 1. Find the values of sine, cosine, tangent of the angle C of the right triangle ΔABC with ($\angle A = 90$) if
 - (a) AB=5, AC=8
 - (b) AB=60, BC=100
- 2. (Using shadows to measure things) A tree casts a 60 m shadow when the angle of elevation of the sun is 30. What is the height of the tree? (see Figure Exercise 1:)(i.e. the elevation angle is the angle at which you look up to the top of the tree from the end of the shadow on the ground)
- 3. (Measuring across obstacles) A land surveyor needs to measure the lengths of two rivers with a common source. The rivers have inaccessible parts due to fast rapids, but the angle between the rivers is known to be of 90 degrees. What are the rivers' lengths, if later the distance between the two rivers is c = 25 and a base angle is $\alpha = 30$? (see Figure Exercise 2)
- 4. (Elevation angle) A hot air balloon is rising at a rate of 6 ft/sec, while a wind is blowing E-W at a rate of $2\sqrt{3}$ ft/sec. Find the speed at which the balloon is traveling, draw its velocity vector, and find its angle of elevation.
- 5. (Depression angle) The Montauk lighthouse is 110.5 ft high and it is situated on a natural foundation of 14 ft. Its keeper sights from the top of the lighthouse a sailboat. The angle of depression of the sighting is 30 degrees. How far is the sailboat ? (see Figure Exercise 5)
- 6. In a science camp a group of students are building rockets that are afterwards rockets at different angles. An observer situate at 1 m away from the launching point measures the height reached by the rocket. What will be the height measured for a rocket launched at an angle of 30 degrees? What will be the height measured for a rocket launched at an angle of 60 degrees? What happens when launching angle gets closer to 90 degrees?
- 7. A ball is kicked into the air at an angle of 30 degrees to the horizontal with an initial resultant velocity of 25 m/s. Find both the vertical and horizontal components of the velocity vector and the magnitude of the resultant velocity vector.
- 8. A helicopter is travelling at a speed of 100m/s towards a destination that is located 30 degrees north of east. What are its velocity components due east and due north.
- 9. A plane is taking off from the airport strip with a speed of 250 m/s at an angle of 60 degrees. How much altitude will it gain in 1 second?
- 10. One day you stroll down to the river and take a walk along the river bank. At one point in time you notice a rock directly across from you. After walking 100 feet downstream, you have to turn an angle of 30 with the river to be looking directly at the rock. How wide is the river?
- 11.* Consider a parallelogram ABCD with AB = 1, AD = 3, $A = 40 \deg$. Find the lengths of diagonals in this parallelogram.

[Hint: introduce a coordinate system so that \overrightarrow{AD} goes along the x-axis. For the diagonal AC write the vector \overrightarrow{AC} as a sum of two vectors, decompose $\overrightarrow{AB} = \overrightarrow{BC}$ into horizontal and vertical components]

12.* Prove that the area of a triangle $\triangle ABC$ can be computed using the formula $Area_{\triangle ABC} = \frac{AB \cdot AC \cdot sinA}{2}$ [Hint: what is the altitude from vertex B?]

Table of sin (angle)

					-			-	
Angle	sin (a)	Angle	sin (a)		Angle	sin (a)		Angle	sin (a)
0.0	0.0	25.0	.4226		46.0	.7193	1	71.0	.9455
1.0	.0174	26.0	.4384		47.0	.7314	1	72.0	.9511
2.0	.0349	27.0	.4540	1	48.0	.7431	1	73.0	.9563
3.0	.0523	28.0	.4695	1	49.0	.7547	1	74.0	.9613
4.0	.0698	29.0	.4848		50.0	.7660	1	75.0	.9659
5.0	.0872	30.0	.5000		51.0	.7772	1	76.0	.9703
6.0	.1045	31.0	.5150	1	52.0	.7880	1	77.0	.9744
7.0	.1219	32.0	.5299	1	53.0	.7986	1	78.0	.9781
8.0	.1392	33.0	.5446		54.0	.8090	1	79.0	.9816
9.0	.1564	34.0	.5592	1	55.0	.8191		80.0	.9848
10.0	.1736	35.0	.5736		56.0	.8290	1	81.0	.9877
11.0	.1908	36.0	.5878		57.0	.8387		82.0	.9903
12.0	.2079	37.0	.6018		58.0	.8480		83.0	.9926
13.0	.2249	38.0	.6157		59.0	.8571		84.0	.9945
14.0	.2419	39.0	.6293		60.0	.8660		85.0	.9962
15.0	.2588	40.0	.6428		61.0	.8746		86.0	.9976
16.0	.2756	41.0	.6561		62.0	.8829		87.0	.9986
17.0	.2924	42.0	.6691		63.0	.8910		88.0	.9994
18.0	.3090	43.0	.6820		64.0	.8988		89.0	.9998
19.0	.3256	44.0	.6947		65.0	.9063		90.0	1.00
20.0	.3420	45.0	.7071		66.0	.9135			
21.0	.3584				67.0	.9205			
22.0	.3746				68.0	.9272			
23.0	.3907				69.0	.9336			
24.0	.4067			1	70.0	.9397	1		

Table of cos(angle)

Angle	cos(a)	Angle	cos(a)	Angle	cos(a)	Angle	cos(a)
0.0	1.00	25.0	.9063	46.0	.6947	71.0	.3256
1.0	.9998	26.0	.8988	47.0	.6820	72.0	.3090
2.0	.9994	27.0	.8910	48.0	.6691	73.0	.2924
3.0	.9986	28.0	.8829	49.0	.6561	74.0	.2756
4.0	.9976	29.0	.8746	50.0	.6428	75.0	.2588
5.0	.9962	30.0	.8660	51.0	.6293	76.0	.2419
6.0	.9945	31.0	.8571	52.0	.6157	77.0	.2249
7.0	.9926	32.0	.8480	53.0	.6018	78.0	.2079
8.0	.9903	33.0	.8387	54.0	.5878	79.0	.1908
9.0	.9877	34.0	.8290	55.0	.5736	80.0	.1736
10.0	.9848	35.0	.8191	56.0	.5592	81.0	.1564
11.0	.9816	36.0	.8090	57.0	.5446	82.0	.1392
12.0	.9781	37.0	.7986	58.0	.5299	83.0	.1219
13.0	.9744	38.0	.7880	59.0	.5150	84.0	.1045
14.0	.9703	39.0	.7772	60.0	.5000	85.0	.0872
15.0	.9659	40.0	.7660	61.0	.4848	86.0	.0698
16.0	.9613	41.0	.7547	62.0	.4695	87.0	.0523
17.0	.9563	42.0	.7431	63.0	.4540	88.0	.0349
18.0	.9511	43.0	.7314	64.0	.4384	89.0	.0174
19.0	.9455	44.0	.7193	65.0	.4226	90.0	0.0
20.0	.9397	45.0	.7071	66.0	.4067		
21.0	.9336			67.0	.3907		
22.0	.9272			68.0	.3746		
23.0	.9205			69.0	.3584		
24.0	.9135			70.0	.3420		

Use your browser "Print" command to make copies of this form.

Use your browser "Print" command to make copies of this form.

Table of tan(angle)

Anala	4	1	Anala	1	1	America	4) I	Anala	4
Angle	tan(a)		Angle	tan(a)		Angle	tan(a)		Angle	tan(a)
0.0	0.00		25.0	.4663		46.0	1.0355		71.0	2.9042
1.0	.0175		26.0	.4877		47.0	1.0724		72.0	3.0777
2.0	.0349		27.0	.5095		48.0	1.1106		73.0	3.2709
3.0	.0524		28.0	.5317		49.0	1.1504		74.0	3.4874
4.0	.0699		29.0	.5543		50.0	1.1918		75.0	3.7321
5.0	.0875		30.0	.5773		51.0	1.2349		76.0	4.0108
6.0	.1051	1	31.0	.6009		52.0	1.2799	1	77.0	4.3315
7.0	.1228	1	32.0	.6249		53.0	1.3270	1	78.0	4.7046
8.0	.1405	1	33.0	.6494		54.0	1.3764	1	79.0	5.1446
9.0	.1584		34.0	.6745		55.0	1.4281		80.0	5.6713
10.0	.1763	1	35.0	.7002		56.0	1.4826	1	81.0	6.3138
11.0	.1944		36.0	.7265		57.0	1.5399		82.0	7.1154
12.0	.2126		37.0	.7535		58.0	1.6003		83.0	8.1443
13.0	.2309	1	38.0	.7813		59.0	1.6643	1	84.0	9.5144
14.0	.2493	1	39.0	.8098		60.0	1.7321	1	85.0	11.430
15.0	.2679	1	40.0	.8391		61.0	1.8040	1	86.0	14.301
16.0	.2867	1	41.0	.8693		62.0	1.8907	1	87.0	19.081
17.0	.3057	1	42.0	.9004		63.0	1.9626	1	88.0	28.636
18.0	.3249	1	43.0	.9325		64.0	2.0503	1	89.0	57.290
19.0	.3443	1	44.0	.9657		65.0	2.1445	1	90.0	infinite
20.0	.3640	1	45.0	1.000		66.0	2.2460	1		
21.0	.3839	1			1	67.0	2.3559	1		
22.0	.4040					68.0	2.4751	1		
23.0	.4245					69.0	2.6051			
24.0	.4452]	70.0	2.7475			

Use your browser "Print" command to make copies of this form.

Source of Trigonometric Tables : www.grc.nasa.gov, licensed under the Creative Commons Attribution-NonCommercial