MATH 6: HOMEWORK 17

1. PARALLEL AND PERPENDICULAR LINES

Theorem 6. Given a line l and point P not on l, there exists exactly one line m through P which is parallel to l.

Proof. Existence.

Let us draw a line k through P which inersects l. Now draw a line m through P such that alternate interior angles are equal: $m \angle 1 = m \angle 2$. Then, by Axiom 4 (alternate interior angles), we have $m \parallel l$.

Uniqueness.

To show that such a line is unique, let us assume that there are two different lines, m_1, m_2 through P both parallel to l. By Theorem 2, this would imply $m_1 \parallel m_2$. This gives a contradiction, because P is on both lines, but parallel lines cannot have any points in common, by definition!

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is perpendicular to l.

2. Sum of angles of a triangle

Definition 1. A triangle is a figure consisting of three distinct points A, B, C (called vertices) and line segments \overline{AB} , \overline{BC} , \overline{AC} . We denote such a triangle by $\triangle ABC$.

Similarly, a quadrilateral is a figure consisting of 4 distinct points A, B, C, D and line segments $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$ such that these segments do not intersect except at A, B, C, D.

Theorem 8. The sum of measures of angles of a triangle is 180° .

Proof. Draw a line m through B parallel to \overrightarrow{AC} (possible by Theorem 6).

[By the way: α is a Greek letter, pronounced "alpha"; mathematicians commonly use Greek letters to denote angles]

Then $m \angle 2 = m \angle 1$ as alternate interior angles, and $m \angle 4 = m \angle 3$, also alternate interior angles. On the other hand, by Axiom 3 (angles add up), we have

$$m \angle 4 + m \angle \alpha + m \angle 2 = 180^{\circ}$$

Thus, $m \angle A + m \angle B + m \angle C = 180^{\circ}$.

Theorem 9. For a triangle $\triangle ABC$, let D be a point on continuation of side AC, so that C is between A and D. Then $m \angle CBD = m \angle A + m \angle B$. (Such an angle is called the exterior angle of triangle ABC.)

Theorem 10. Sum of angles of a quadrilateral is equal to 360°.

Homework

- 1. Prove Theorem 7.
- 2. Prove Theorem 9.
- **3.** Deduce a formula for the sum of angles in a polygon with *n* vertices.
- 4. In the figure below, all angles of the 7-gon are equal. What is angle α ?

- 5. Show that if, in a quadrilateral ABCD, diagonally opposite angles are equal $(m \angle A = m \angle C, m \angle B = m \angle D)$, then opposite sides are parallel. [Hint: show first that $m \angle A + m \angle B = 180^{\circ}$.]
- 6. The reflection law states that the angles formed by the incoming light ray and the reflected one with the surface of the mirror are equal: $m \angle 1 = m \angle 2$

Using this law, show that a corner made of two perpendicular mirrors will reflect any light ray exactly back: the reflected ray is parallel to the incoming one:

This property – or rather, similar property of corners in 3-D – is widely used: reflecting road signs (including stop signs), tail lights of a car, reflecting strips on clothing are all contributed out of many small reflecting corners so that they reflect the light of a car headlamp exactly back to the car.

7. The measures of the angles of a triangle are in the ratio 2:3:4. Find the measure of each angle.*8. (Stop!)

- (a) Suppose A, B, C, D are points such that $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DA}$ and $\angle DAB \cong \angle ABC \cong \angle BCD \cong \angle CDA$. Prove that each of the four angles is a right angle. What is this figure called?
- (b) Suppose X, Y are on \overline{AB} (with X closer to A and Y closer to B, as shown in the figure below), and E is on \overline{AD} and F on \overline{BC} . Prove that $m \angle EXY > 90^{\circ}$.
- (c) Suppose $m \angle EXY = 135^{\circ}$. Prove that $\triangle EAX$ is isosceles.
- (d) Suppose now that $m \angle EXY = 135^{\circ}$, $\triangle EAX \cong \triangle FBY$, and $\overline{EX} \cong \overline{XY}$. Suppose also that two triangles are constructed around vertices C and D as A well, essentially forming two more corner triangles, each congruent to $\triangle EAX$. Now cut all four of these triangles out from ABCD. What are you left with?

