GEOMETRY REVIEW PROBLEMS

1. TRIANGLE SPECIAL LINES

Given any triangle $\triangle ABC$, there are three special types of lines that can be drawn inside the triangle; each type of line goes from one vertex to the opposite side, so we can for example define the three lines going from A to BC. Here they are: the median from A to BC is the line from A to the midpoint of BC; the altitude from A to BC is the line going through A that is perpendicular to BC; the angle bisector from A to BC is the line that goes through A such that the angle inside $\triangle ABC$ at vertex A is split in half by this line.

2. Homework

- **1.** Let *l* be a line and *P* a point not on *l*. Let *M* be on *l* such that $PM \perp l$ and *N* be some point other than *M* on *l*. Prove that PN > PM (you will need to use the theorem that bigger angles are opposite bigger sides in a triangle).
- **2.** In triangle $\triangle ABC$ draw median AM. On the extension of AM, take point N such that MN = AM. Show that AB = NC and AC = BN.
- **3.** Suppose that in triangle $\triangle ABC$, the angle bisector from A to BC is the same line as the altitude from A to BC. Prove that $\triangle ABC$ is isosceles. Which side is the base?
- **4.** Two circles with centers C and D intersect in A and B. Show that $AB \perp CD$.
- 5. Let $\angle AOB$ be a 45° angle such that OA = OB. Recall that there is a unique perpendicular line to
 - OA that goes through A; let this line intersect OB at point X. Similarly, let the perpendicular to
 - OB through B intersect OA at point Y.
 - (a) Draw a diagram of the above described scenario, and prove that X is farther from O than A is that is, prove that OX > OA.
 - (b) Let AX and BY intersect at point C. Draw the line segment OC on your diagram, and then prove that $\angle COA \cong \angle COB$.
 - (c) Draw in line segment XY on your diagram and extend \overrightarrow{OC} so that it intersects XY. Prove that \overrightarrow{OC} intersects XY at the midpoint of XY. What will be the angle of intersection?
- 6. Let $\triangle ABC$ be a triangle and P any point on the line segment BC. Let E be on AB such that $PE \perp AB$, and M be on the extension of line \overrightarrow{PE} such that ME = PE (E will be outside $\triangle ABC$); similarly, let F be on AC such that $PF \perp AC$, and N be on the extension \overrightarrow{PF} such that NF = PF. Prove that:
 - (a) AN = AM = AP
 - (b) BM + CN = BC
 - (c) $\angle BMA + \angle CNA = 180^{\circ}$
- 7. Let △ABC be a triangle. Extend line BC to an infinite line, and take points M and N on BC so that the order is M, B, C, N and MB = AB, and CN = AC (M, N will be outside △ABC). If E and F are the middle points of AM and AN, and P is the intersection of EB and FC, prove that:
 (a) m(∠BEM) = m(∠BEA) = 90°
 - (b) PM = PA = PN
 - (c) $\angle PMB = \angle PAB, \angle PNC = PAC$
- *8. Let ABCD and ABEF be parallelograms such that E, F are on the line \overrightarrow{CD} ; let the diagonals \overline{AC} , \overline{BD} intersect at M and $\overline{AE}, \overline{BF}$ intersect at N. Prove that $\overline{MN} \parallel \overline{AB}$.
- ***9.** Prove that a line and a circle cannot intersect at three different points.