SchoolNova, Math 5c Homework 22 Triangles - Part V (Challenge Problems) April 5, 2020

- 1. Write a summary of the results you have studied so far in geometry, for example
 - Vertical Angles
 - Linear Pair
 - Distance Formula
 - Parallel Lines and Traversals
 - Parallel Lines in Coordinate Plane
 - Slope of a line
 - Equation of a line in slope-intercept form
 - Types of Triangles
 - Triangle Sum Theorem
 - Pythagoras Theorem
 - Postulates for Congruence of Triangles
- 2. Given $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$, show that $\triangle AFB \cong \triangle EFD$.

3. A regular hexagon has six congruent sides and six congruent interior angles.

Explain how the following series of figures from left to right suggest a proof that when a triangle is formed by connecting every other vertex of a regular hexagon (rightmost figure), the result is an equilateral triangle.

4. You are given the following figure with coordinates. *H* is the midpoint of \overline{AD} and *G* is the midpoint of *AE*. Prove that $\overline{DG} \cong \overline{EH}$.

5. A parallelogram is a quadrilateral, in which opposite sides are parallel.

- (a) Show that in a parallelogram, diagonally opposite angles are equal, that is, $\angle A \cong \angle C$ and $\angle B \cong \angle D$.
- (b) Show that opposite sides are equal, that is $\overline{AB} \cong \overline{CD}$, and $\overline{BC} \cong \overline{AD}$. (Hint: Use the properties of triangles)
- 6. Given trapezoid ABCD with parallel sides \overline{AD} and \overline{BC} , and not isosceles, which triangle is equal in area to $\triangle ABD$?

