Absolute Value means ...

... only how far a number is from zero:

"6" is 6 away from zero, and "-6" is also 6 away from zero.

a + b = b + a	commutative law for addition
ab = ba	commutative law for multiplication
a+(b+c)=(a+b)+c	Associative law for addition
a(bc) = (ab)c	associative law for multiplication
a(b+c) = ab + ac	distributive law
a(b-c) = ab - ac	distributive law
$\mathbf{a} - (\mathbf{b} + \mathbf{c}) = \mathbf{a} - \mathbf{b} - \mathbf{c}$	distributive law
$\mathbf{a} - (\mathbf{b} - \mathbf{c}) = \mathbf{a} - \mathbf{b} + \mathbf{c}$	distributive law

Power Rules

General notation (n is a whole number): $a^n = a * a * a * ... * a$ (n times) Special cases:

$a^0 = 1$	read: a-to-the-zero		
$a^1 = a$	is just itself 'a'		
$a^2 = a * a$	read: a-squared		
$a^3 = a * a * a$	read:a-cubed		

 $(ab)^n = ab * ab * ab * ... * ab$ n times $(ab)^n = (a * a * a * ... * a)(b * b * ... * b)$ n times $(ab)^n = a^n b^n$

 $a^n a^m = (a * a * ... * a)(a * a * ... * a)$ n and m times respectively $a^n a^m = a * a * a * a \dots * a$ n+m times

$a^n a^m = a^{n+m}$	$\sqrt{ab} = \sqrt{a} \sqrt{b}$
$\frac{a^n}{a^m} = a^{n-m}$	$\sqrt{a} = a^{\frac{1}{2}}$
	• • • •
$a^n = \frac{1}{a^{-n}}$	
$a^{-n} = \frac{1}{a^n}$	

Square of the sum formula:

Difference of squares formula: $(x - a)(x + a) = x^2 - a^2$ Square of the difference formula: $(a - b)(a - b) = a^2 - 2ab + b^2$ $(a+b)(a+b) = a^2 + 2ab + b^2$

Powers of 2

n	0	1	2	3	4	5	6	7	8	9
2 ⁿ	1	2	4	8	16	32	64	128	256	512

Theorem (Pythagorean theorem). In a right triangle with legs *a*, *b* and hypotenuse *c*, one has:

Rule 1 (Side-Side rule). If AB = A'B', BC = B'C' and AC = A'C' then $\triangle ABC \cong \triangle A'B'C'$. This rule is commonly referred to as the *SSS* rule.

Rule 2 (Angle-Side-Angle Rule). If $\angle A = \angle A'$, $\angle B = \angle B'$ and AB = A'B', then $\triangle ABC \cong \triangle A'B'C'$. This rule is commonly referred to as ASA rule.

Rule 3 (SAS Rule). If AB = A'B', AC = A'C' and $\angle A = \angle A'$, then $\triangle ABC \cong \triangle A'B'C'$. These rules – and congruent triangles in general – are very useful for proving various properties of geometric figures. As an illustration, we prove the following useful result. **Probability**

$$P(A) = \frac{number of outcomes giving A}{total number of outcomes}$$

P(A or B) = P(A) + P(B) (mutually exclusive events)

P(notA) = 1 - P(A)

The probability of two non-mutually exclusive events is denoted by: P(Y or Z) = P(Y) + P(Z) - P(Y and Z)

The probability of two independent events is denoted by: P(Y and Z) = P(Y) * P(Z)

Speed, time, distance

S = V * t, where S – distance, V -speed, t -time