Math 4d. Class work 17.

Algebra.

Warm up:

(4.43 + 3.753) + 5.57 = $8.375 \cdot 6.34 + 3.66 \cdot 8.375 =$ (2.38 - 1.89) + 7.62 = 589.567:10 = 654.1:1000 = $789.564 \cdot 100 =$ 0.45:1000 =

Coordinates.

Find the coordinates of points A, B, C, D, E, F, G, and H on the number line below:

Mark the points A(0), B(1), C $\left(-1\frac{1}{2}\right)$, D(5), E(-5), F(-3), G(3)

Is there anything in common between points F and G, D and E?

Earth coordinate system:

Earth coordinate system: A *geographic coordinate system* uses a three-dimensional spherical surface to determine locations on the earth. Any location on earth can be referenced by a point with longitude and latitude coordinates. The values for the points can have the following units of measurement:

- Decimal degrees
- Decimal minutes
- Decimal seconds

For example, the following figure shows a geographic coordinate system where a location is represented by the coordinates longitude 80 degree East and latitude 55 degree North

Decart coordinate system.

A **Cartesian coordinate system** is a coordinate system that specifies each point uniquely in a plane by a set of numerical **coordinates**, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.

>, <, or =) if possible, if it is known that a and b are positive numbers and x and y are negative numbers:

0 <i>x</i>	<i>a</i> 0	-b 0	$0 \ x$
a x	y b	$-y \dots x$	$-a \dots b$
<i>x</i> <i>x</i>	$- y \dots y$	a a	$ b \dots -b $
x a	$ x \dots - x$	$ x \dots - y $	$a \ \dots \ -b $

2. Compute:

1)
$$\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5}$$
;
2) $\frac{6}{7} \cdot \frac{7}{8} \cdot \frac{8}{9} \cdot \frac{9}{10} \cdot \frac{10}{11}$;
3) $\frac{1}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{23}{24} \cdot \frac{24}{25}$;
4) $1 \frac{1}{2} \cdot 1 \frac{1}{3} \cdot 1 \frac{1}{4} \cdot 1 \frac{1}{5}$;
5) $\left(1 + \frac{1}{4}\right) \cdot \left(1 + \frac{1}{5}\right) \cdot \left(1 + \frac{1}{6}\right) \cdot \left(1 + \frac{1}{7}\right) \cdot \left(1 + \frac{1}{8}\right)$;
6) $\left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{4}\right) \cdot \dots \cdot \left(1 - \frac{1}{99}\right) \cdot \left(1 - \frac{1}{100}\right)$.

Geometry.

Circle is running along the line. At a starting time point A was the point of contact of the circle and the line. The curve which point A will trace is called cicloide.

What line the center of the circle will trace?

Imagine the "square wheel" – a square which is staying on a road. Draw a line traced by the point A (vertex) in a process of "rolling"? The diagonal intersection?

