Handout #9. November 17, 2019

Solve equations by substitution:

Example: $(y + 5) \div 3 = 7$ substitution: y + 5 = z $z \div 3 = 7$ $z = 7 \times 3 = 21$ y + 5 = 21y = 21 - 5 = 16 Check: $(16 + 5) \div 3 = 7$

Remember vertical angles?

$$\angle 1 = \angle 2$$
$$\angle 3 = \angle 4$$

• A **transversal** is a **line** that passes through two **lines** in the same plane at two distinct points.

• The angles in matching corners are called **Corresponding Angles**.

• When the lines are parallel, the **Corresponding Angles** are equal

 $\angle 1 = \angle 3$

• The **angles** that are formed on opposite sides of the transversal and inside the two lines are **Alternate Interior Angles**.

• When the lines are parallel, the

Alternate Interior Angles are equal.

 $\angle 1 = \angle 2$

Triangles:

Acute triangle has all acute angles, not only 60°

Isosceles triangle has two equal sides

Obtuse triangle has an obtuse angle.

Scalene triangle that has three unequal sides

Equilateral triangle has three equal sides

Right triangle has a right angle.

Triangle properties:

We prove it by using our knowledge of vertical angles and corresponding angles and the knowledge that a straight line is a straight angle which is 180°

In any triangle ($\forall \Delta$) the sum of 2 sides is always grater then the third. ($\forall \Delta ABC, AB+BC > AC$)

In any triangle,

- the **largest** interior **angle** is **opposite** the **largest side**.
- the smallest interior angle is opposite the smallest side
- the middle-sized interior angle is **opposite** the middle-sized side