Lesson № 22

1 Solve the word problems:

A. A robot spent 3 hours to make 6 sets of chess pieces. How long will it take the robot to make 17 such sets?

B. It takes a raft 6 hours to drift every 18 km downstream. How long will it take the raft to drift 24 km?

C. There were 18 apples and 24 oranges in a bad. Katie took ¹/₃of those apples and ¹/₄ of the oranges. How many fruit did she take?

 Image: Sector state sta

2

Solve equations:

General fraction $\frac{m}{n}$.

3 Calculate:

$$1 \text{ cm} + 1 \text{ cm} = 1 \text{ m} + 1 \text{ m} = \frac{1}{7} + \frac{1}{7} = \frac{1}{n} + \frac{1}{n} = \frac{1}{1} \text{ cm} \times 3 = 1 \text{ m} \times 3 = \frac{1}{7} \times 3 = \frac{1}{n} \times$$

A fraction $\frac{1}{n}$ represents a unit broken into n equal parts. A fraction $\frac{m}{n}$ represents m fractions $\frac{1}{n}$ added together: $\frac{m}{n} = m \times \frac{1}{n}$

4 Calculate:

$$3 \text{ cm} + 5 \text{ cm} = 2 \text{ dm} + 6 \text{ dm} = \frac{2}{9} + \frac{5}{9} = \frac{2}{n} + \frac{5}{n} =$$

$$3 \text{ cm} \times 5 = 2 \text{ m} \times 7 = \frac{1}{11} \times 4 = \frac{1}{n} \times 9 =$$

5 Label the following fractions on the number line: $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{12}$, $\frac{5}{12}$, $\frac{3}{4}$, $1\frac{1}{2}$, $1\frac{3}{12}$, $\frac{2}{3}$

- $\square \times 5 = \frac{1}{6} = 5: \square$ $\frac{1}{8} \times 3 = \frac{\square}{\square} = \square: \square$ $\frac{1}{\square} \times \square = \frac{1}{5} = 3: \square$
- $\frac{1}{7} \times \square = \frac{4}{7} = \square : \square \qquad \qquad \frac{\square}{5} \times 2 = \frac{2}{5} = 2 : \square \qquad \qquad \frac{1}{8} \times 5 = \frac{\square}{\square} = 5 : \square$

3

Addition and subtraction 8 in ancient Egyptian symbols is similar to what they are in our numerical system.

Sometimes you have to regroup.

For example:

+ 99999 ∩∩ _ 999999 ∩			
0000 000000000000000000000000000000000			

Number	Symbol	Description
1		Vertical stroke
10	Ω	Heel bone
100	୭	Scroll
1000	ę	Lotus flower
10,000	б	Pointing finger
100,000	ð	Fish
1,000,000	ىرك	Kneeling person

The answer is 11 hundreds, 3 tens, and 12 units.

Instead of 12 units we want to have 2 units and 1 ten.

Also, instead of 11 hundreds we want to have 1 thousand and 2 hundreds.

So the answer is really:

°9∩∩∩∩∥.

Calculate in Egyptian:

