MATH 10 ASSIGNMENT 13: LIMITS JANUARY 26, 2020

LIMITS

We say that a sequnce a_n has limit A if, as n increases, terms of the sequence get closer and closer to A. This definition is not very precise. For example, the terms of sequence $a_n = 1/n$ get closer and closer to 0, so one expects that the limit is 0. On the other hand, it is also true that they get closer and closer to -1. So the words "closer and closer" is not a good way to express what we mean.

A better way to say this is as follows.

Definition. A set U is called a trap for the sequence a_n if, starting with some index N, all terms of the sequence are in this set:

$$\exists N: \quad \forall n \ge N: \ a_n \in U$$

Note that it is not the same as "infinitely many terms of the sequence are in this set". Now we can give a rigorous definition of a limit.

Definition. A number A is called the *limit* of sequence a_n (notation: $A = \lim a_n$) if for any $\varepsilon > 0$, the neighborhood $B_{\varepsilon}(A) = \{x \mid d(x, A) < \varepsilon\}$ is a trap for the sequence a_n .

For example, when we say that for a sequence $a_n \in \mathbb{R}$, $\lim a_n = 3$, it means:

there is an index N such that for all $n \ge N$ we will have $a_n \in (2.99, 3.01)$, there is an index N' (possibly different) such that for all $n \ge N'$ we will have $a_n \in (2.999, 3.001)$ there is an index N'' such that for all $n \ge N''$ we will have $a_n \in (3 - 0.0000001, 3 + 0.0000001)$

1. Consider the sequence $a_n = 1/n$ $(a_1 = 1, a_2 = 1/2, a_3 = 1/3,...)$.

(a) Fill in the blanks in each of the statements below:

- For all
$$n \geq$$
____, $|a_n| < 0.1$

- For all $n \ge$ ____, $|a_n| < 0.001$ For all $n \ge$ ____, $|a_n| < 0.0017$

Each one of these assertions implies that a certain set is a trap for the sequence $a_n = 1/n$. Write down these three sets.

(b) Show that $\lim a_n = 0$.

2. Prove that $\lim \frac{1}{n(n+1)} = 0$ (hint: $\frac{1}{n(n+1)} < \frac{1}{n}$).

3. Find the limits of the following sequences if they exist:

- (a) $a_n = \frac{1}{n^2}$ (b) $a_n = \frac{1}{2^n}$ (c) $a_n = n$

4. Explain why the number 1 is NOT a limit of the sequence $(-1)^n$.

- 5. (a) Show that the limit of a sequence (if exists) is an accumulation point.
 - (b) Show that converse is not necessarily true: an accumulation point does not have to be a lmit.
 - (c) Show that if a sequence has two different accumulation points C, C', then it cannot have a limit.

6. Show that the set of accumulation points of a sequence is closed.

- 7. (a) Let S be a closed set (i.e., a set that contains all of its accumulation points, see problem 4.c) in Homework 13) and a_n a sequence such that $a_n \in S$ for any n. Prove that if the limit $\lim a_n$ exists, it must be also in S.
 - (b) Let $a_n \ge 0$ for all n. Prove that then $\lim a_n \ge 0$ (assuming it exists).
 - (c) Let $a_n > 0$ for all n. Is it true that then $\lim a_n > 0$ (assuming it exists)?