MATH 10 ASSIGNMENT 7: DOT PRODUCTS

NOV 10, 2019

DOT PRODUCT

By Pythageorean theorem, for a vector $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, its length is given by $\sqrt{x^2 + y^2 + z^2}$. It is common to

denote the length of a vector \mathbf{v} by $|\mathbf{v}|$:

$$|\mathbf{v}| = \sqrt{x^2 + y^2 + z^2}$$

A convenient tool for computing lengths is the notion of the *dot product*. The dot product of two vectors is a number (not a vector!) defined by

$$\begin{bmatrix} x_1\\y_1\\z_1 \end{bmatrix} \bullet \begin{bmatrix} x_2\\y_2\\z_2 \end{bmatrix} = x_1x_2 + y_1y_2 + z_1z_2$$

The dot product has the following properties:

- 1. It is symmetric: $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- 2. It is linear as function of v, w:

$$(\mathbf{v}_1 + \mathbf{v}_2) \cdot \mathbf{w} = \mathbf{v}_1 \cdot \mathbf{w} + \mathbf{v}_2 \cdot \mathbf{w}$$

 $(c\mathbf{v}) \cdot \mathbf{w} = c(\mathbf{v} \cdot \mathbf{w})$

3.
$$\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$$
, or, equivalently, $|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

4. Vectors \mathbf{v} , \mathbf{w} are perpendicular iff $\mathbf{v} \cdot \mathbf{w} = 0$.

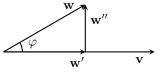
The first three properties are immediate from the definition. The last one follows from the Pythagorean theorem: if $\mathbf{v} \perp \mathbf{w}$, then by Pythagorean theorem, $|\mathbf{v}|^2 + |\mathbf{w}|^2 = |\mathbf{v} - \mathbf{w}|^2 = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} + 2\mathbf{v} \cdot \mathbf{w}$.

From these properties one easily gets the following important result:

Theorem.

$$\mathbf{v} \boldsymbol{\cdot} \mathbf{w} = \mathbf{v} \boldsymbol{\cdot} \mathbf{w}' = |\mathbf{v}| \cdot |\mathbf{w}| \cos arphi$$

where $\mathbf{w} = \mathbf{w}' + \mathbf{w}''$, and vector \mathbf{w}' is a multiple of \mathbf{v} , \mathbf{w}'' is perpendicular to \mathbf{v} :



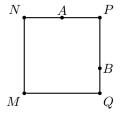
and φ is the angle between vectors \mathbf{v} , \mathbf{w} .

This theorem is commonly used to find the angle between two vectors:

$$\cos\varphi = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| \cdot |\mathbf{w}|}$$

HOMEWORK

- 1. Prove that the triangle with vertices at A(3,0), B(1,5), and C(2,1) is obtuse. Find the cosine of the obtuse angle.
- **2.** Prove the law of cosines: in a triangle $\triangle ABC$, with sides AB = c, AC = b, BC = a, one has $c^2 = a^2 + b^2 2ab \cos \angle C$. [Hint: $c^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$, and $\overrightarrow{AB} = \overrightarrow{CB} \overrightarrow{CA}$.]
- **3.** On the sides of a square MNPQ, with side 1, the points A and B are taken so that $A \in NP$, $NA = \frac{1}{2}, B \in PQ$, and $QB = \frac{1}{3}$. Prove that $\angle AMB = 45^{\circ}$.



- 4. Consider the plane given by equation ax + by + cz = d. (a) Let $P_1 = (x_1, y_1, z_1), P_2 = (x_2, y_2, z_2)$ be two points on this plane. Prove that then $a(x_1 - x_2) + b(y_1 - y_2) + c(z_1 - z_2) = 0.$
 - (b) Prove that $\overrightarrow{P_1P_2}$ is perpendicular to vector $\mathbf{v} = (a, b, c)$. (In such a situation, we say the plane is perpendicular to \mathbf{v} .)