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Vectors

We saw that we can write all vectors ~a in the plane as ~a = a1~e1 + a2~e2 for any two fixed noncolinear
vectors ~e1, ~e2 (called basis vectors). In terms of the components (called coordinates), we have

(1) ~a +~b = (a1~e1 + a2~e2) + (b1~e1 + b2~e2) = (a1 + b1)~e1 + (a2 + b2)~e2

(see fig.1) and

(2) c~a = c(a1~e1 + a2~e2) = (ca1)~e1 + (ca2)~e2.

Thus this gives a correspondence between vectors and ordered pairs (x1, x2) ∈ R2 with the operations of
addition and multiplication by numbers as defined below. The concept that relates the two is the coordinate
plane (see fig.1). The same goes for 3-dimensional vectors, so one generalizes these concepts by introducing
Rn.

Figure 1. Vector addition in coordinates.

Rn

We use notation Rn for the set of all points in n-dimensional space. Such a point is described by an
n-tuple of numbers (coordinates) x1, x2, . . . , xn. We will write them as a column of numbers:

x =


x1

x2

...
xn


By extending the ideas from the previous section, we will also refer to points of Rn as vectors (starting

at the origin and ending at this point).



We have two natural operations on Rn: addition of vectors and multiplication by numbers:
x1

x2

...
xn

 +


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn



c


x1

x2

...
xn

 =


cx1

cx2

...
cxn

 , c ∈ R

These operations satisfy obvious associativity, commutativity, and distributivity properties.
Note that there is no multiplication of vectors — only multiplication of a vector by a number.

Matrices M[m,n]

A matrix of order [m,n] is a generalization of the above concept: an array with m lines and n columns of
the form: 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

Sum of matrices of the same order and multiplication by a number are defined in analogy to the operations
on Rn defined above.

The product of a [m,n] matrix A = [aij ] by a [n, p] matrix B = [bij ] is the [m, p] matrix C = AB =
[
∑n

j=1 aijbjk].

Linear functions

We will call a function f : R→ R linear if f(x+ y) = f(x) + f(y),∀x, y ∈ R and f(cx) = cf(x),∀c, x ∈ R.
We can generalize this concept by substituting the domain or contradomain by a space of vectors. For
example, for a vector-valued function of vectors, these conditions would be

~f(~x + ~y) = ~f(~x) + ~f(~y),

~f(c~x) = c~f(~x),

for all vectors ~x, ~y and all c ∈ R. This function could represent, for example, the velocity field of a fluid.

Homework

In the class, we saw that Rn is a good way to think of vectors. In these problems, you will understand
how these relate to matrices and linear maps.

1. Matrices are vectors
(a) Write down the expression for A + B and cA, where A and B are [2, 2] matrices and c ∈ R.
(b) Find 4 matrices e1, e2, e3, e4 such that every [2, 2] matrix A can be written as A = a1e1 + a2e2 +

a3e3 + a4e4.
(c) Write the operations of part (a) in terms of the coordinates (a1, a2, a3, a4).

2. Linear functions are vectors
(a) Show that, if f : R → R and g : R → R are linear functions, then f + g : R → R, where

(f + g)(x) = f(x) + g(x), is a linear function. Then show that, for any c ∈ R, the function
cf : R→ R defined by (cf)(x) = cf(x) is linear.

(b) Show that f(x) = ax for some a ∈ R.
(c) Find a function e1 : R→ R such that any linear function f : R→ R can be written as f = f1e1

for some f1 ∈ R.



3. Linear functions are matrices
(a) Consider the equation ~y = f(~x), where f is a linear function which takes 3-dimensional vectors

as its argument and gives 2-dimensional vectors as its image. Now use bases to write ~x =

x1
~d1 + x2

~d2 + x3
~d3 and ~y = y1~e1 + y2~e2. Show that y1, y2 are linear functions of (x1, x2, x3).

(b) Use the ideas from part (a) and from part (b) of the previous problem to show that there are
real numbers a11, a12, a13 such that y1(x1, x2, x3) = a11x1 + a12x2 + a13x3. Find analogous
a21, a22, a23 for y2(x1, x2, x3).

(c) Write ~y = f(~x) as a matrix equation.
(d) Show that, under the correspondence found between linear functions and matrices, sums of linear

functions and product by a number (see previous problem) become sum of matrices and product
of a matrix by a number.

4. An interpretation of matrix product
(a) Denote the space of two-dimensional vectors by E2. Consider two linear functions f, g : E2 → E2.

Show that f ◦ g : E2 → E2, defined by (f ◦ g)(~x) = f(g(~x)), is linear.
(b) Using basis vectors ~e1, ~e2, we can write the equations ~y = f(~x), ~y = g(~x) and ~y = (f ◦ g)(~x) in

matrix form, as in the previous problem. Let F and G denote the [2, 2] matrices corresponding
to the functions f, g, respectively. Show that the matrix corresponding to (f ◦ g) is the matrix
product FG.


