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Formal power series

Given a sequence a0, a1, a2, ..., its (formal) generating function is

f(x) = a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n

Generating functions can be added, subtracted and multiplied just like polynomials (collect like powers
together). The radius of convergence of a power series is the largest number R > 0 such that, for all
0 ≤ r < R,

∑∞
n=0 |an|rn converges. Within its radius of convergence, a power series may be differentiated

and integrated like a polynomial (term-by-term), and they define a class of functions called analytic functions.
We have f(0) = a0 and f ′(0) = a1. The nth derivative is f (n)(0) = n!an. Hence, within the radius of

convergece, the coefficients may be recovered from the power series.

Problems

1. Let F (x) = F0 +F1x+F2x
2 + . . . be the generating series for the Fibonacci numbers: F0 = 0, F1 = 1,

Fk+1 = Fk + Fk−1. Prove that

F (x) =
x

1− x− x2
=

1√
5

( 1

1− Φx
− 1

1− Φ̄x

)
where

Φ =
1 +
√

5

2
, Φ̄ =

1−
√

5

2

and use it to find an explicit formula for Fn.

2. Recall the Catalan numbers satisfy the recurrence C0 = 1, Cn+1 = C0Cn + C1Cn−1 + · · · + CnC0.
Prove that

c(x) =

∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
.

3. An exact covering system of congruences is a collection of arithmetic progressions, 0 ≤ ai < mi,

ai +mik, k ∈ Z

that are disjoint, and whose union is the integers. For instance, every integer satisfies exactly one of
the congruences 0 mod 2, 1 mod 4, 3 mod 12, 7 mod 12, 11 mod 24, 23 mod 24.

a. Prove the generating function identity

1

1− x
=
∑
i

xai

1− xmi
.

b. Prove that every exact covering system of congruences with more than one congruence has a
repeated step (e.g. 12 and 24 above).

4. Prove that
∑∞

m=0

(
2m
m

) (
x
2

)2m
= 1√

1−x2
.

5. Let C(n) denote the number of ways of making n cents using pennies, nickels, dimes and quarters.
Let C(0) = 1. Prove that

c(x) =

∞∑
n=0

C(n)xn =
1

1− x
1

1− x5
1

1− x10
1

1− x25
.



6. Let P (n) be the number of partitions of n, that is, the number of ways of writing n as the sum of 0
or more positive integers. Thus P (0) = 1, P (1) = 1, P (2) = 2, P (3) = 3, P (4) = 5, etc. since

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Prove that
∞∑

n=0

P (n)xn =
1

1− x
1

1− x2
1

1− x3
· · · .

7. A permutation σ of n letters is a one-to-one map of the numbers {1, 2, ..., n}. Permutations can be
thought of as orderings of a deck of n cards. A cycle in a permutation is a sequence a1, a2, ..., ak such
that σ(a1) = a2, σ(a2) = a3, ..., σ(ak) = a1. Every permutation can be split into disjoint cycles.

Given a set of numbers b1, b2, b3, ..., bk with b1 + 2b2 + 3b3 + · · · + kbk = n, let c(b) denote the
number of permutations of n numbers with b1 cycles of length 1, b2 cycles of length 2, ..., bk cycles
of length k. Let

C(x1, x2, ...; t) =

∞∑
n=1

tn

n!

∑
b1+2b2+...+nbn=n

c(b)xb11 ...x
bn
n .

This is the ‘grand’ cycle index generating function.
a. Prove that

c(b) =
n!∏

j≥1(bj !)jbj
.

b. Using the above or otherwise, prove

C(x1, x2, ...; t) = exp

∑
j≥1

xjt
j

j

 .
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