A and G 1. Class work 25. Algebra.

school

Functions.

input x output f(x)

x	2	3	4	5	6	7
у	6	9	12	15	18	?

x	5	6	9	10	11	14
у	0	1	4	0	1	?

We established a relationship between two sets – we can describe a rule, by which each element of one set (domain) can be associated with one element of another set (codomain).

y = f(x)

What is the rule for the function in the first table, second?

What is a domain and codomain for both functions?

Diagram of a function, with domain $X=\{1, 2, 3\}$ and codomain $Y=\{A, B, C, D\}$, which is defined by the set of ordered pairs $\{(1,D), (2,C), (3,C)\}$. The image/range is the set $\{C,D\}$. (By Bin im Garten - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12604955)

This diagram, representing the set of pairs {(1,D), (2,B), (2,C)}, does *not* define a function. One reason is that 2 is the first element in more than one ordered pair, (2, B) and (2, C), of this set. Two other reasons, also sufficient by themselves, is that neither 3 nor 4 are first elements (input) of any ordered pair therein. By Bin im Garten - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12526713

Draw a coordinate system and let's try to do some functions.

$$\frac{2x-3}{x-6} = \frac{2x-1}{x-2};$$

$$(2x-3)(x-2) = (2x-1)(x-6); \quad 2x^2 - 4x - 3x + 6 = 2x^2 - 12x - x + 6; \quad -7x + 6$$

$$= -13x + 6; \quad x = 0$$

1. Prove that for any natural number n, $n^3 - n$ is divisible by 6. 2. Evaluate each

a.
$$0.6 \cdot \frac{2}{3}$$
 b. $\frac{4}{5} \cdot \frac{3}{5}$ c. $-0.25 \cdot \frac{4}{7}$ d. $(0.6)^2$
: (-0.08) : (-1.2) $-2\frac{6}{7}$: 0.04
 $+3\frac{12}{17}$ $-\left(-7\frac{1}{5}\right)$: 0.02 $-\frac{3}{5}$
 $\cdot \left(-3\frac{1}{11}\right)$ -11.8 $+155$ -4.4
 $-\frac{2}{7}$ $\frac{2}{7}$ $\frac{2}{7}$ $\frac{2}{7}$ $\frac{2}{7}$