School Nova
Computer Science

Nested dictionaries, zip()
User-defined functions: first look

1/12/2020
By Oleg Smirnov

Nested dictionary

spring_months = {1:"March", 2:"April", 3:"May"}
summer_months = {1:"June”, 2:"July", 3:"August"}
year = {"spring":spring_months, "summer":summer_months}

print(year["spring"][1])
>>> March

fall_months = {1:"September", 2:"October”, 3:"November"}
year["fall"] = fall_months

print(year["fall"][3])
>>> November

Dictionary from two lists

listA = ["France”, "Italy", "Spain"]
listB = ["Paris", "Rome", "Madrid"]

R = dict()

foriin range(len(listA)):
R[listA[i]] = listB][i]

alternative approach
R = dict(zip(listA, listB))

You cannot create a dictionary if zipping more than two lists!
(We need two because we need a “key” and a “value”)

zip()

listA, listB = ["France", "Italy"”, "Spain"], ["Paris", "Rome", "Madrid"]
zip(listA, listB) creates a zip object, consisting of tuples:

print(zip(listA, listB))
>>> <zip object at 0xO00001FD9FB14888>

print(list(zip(listA, listB)))
>>> [('France’, 'Paris'), ('Italy’, 'Rome’), ('Spain’, 'Madrid’)]

print(dict(zip(listA, listB)))
>>> {'France': 'Paris’, 'ltaly': 'Rome’, 'Spain': 'Madrid’}

If the length of input lists is not equal, zip() discards the “extra”
elements from the longer list.

User-defined functions INTRO

You can create your own functions in Python!

A function is a task (which is likely used more than once).
Python does not have functions for all possible tasks in the world.
BUT we can create as many user-defined functions as we want.

Why?

1) Avoid repeating the same lines of code again and again (and again).
A function may consistent of multiple lines of code, which we do not
want to repeat. At the same time, calling a function is usually a
single line of code.

2) Functions allow us to examine parts of our code in isolation (and
easily find those bugs!)

3) Functions (that are proven to work well) allow us to ignore on what’s
“inside” and focus on the more important and immediate problems

User-defined functions, part 1

this function does something simple
def myfun():
print("Hello! | hope you are having a nice day!")
foriin range(100): myfun() # and this is how we use this function

this function returns an object
import datetime
def today():
return(datetime.date.today())
print(f"Today is {today()}") # and this is how we use this function

this functions accepts an argument and returns an object (value)
def sum_powers(x):

result = x + x**2 + x**3

return(result)
print(sum_powers(3)) # and this is how we use this function

User-defined functions, part 2

this functions accepts two arguments and returns an object (value)
def sum_powers(x, y):
result=0
foriinrange(l,y+ 1):
result = result + x™**i
return(result)
print(sum_powers(2, 2)) # and this is how we use this function

this function accepts any number of arguments and returns an object (value)
def product(*x):
prod =1
foriinx:
prod = prod * i
return(prod)
print(product(5, 10, 20)) # and this is how we use this function

