
School Nova
Computer Science

9/28/2019

By Oleg Smirnov

Work organization

• Organize your folders in a way that will make it easy for you to find your
code. For example, create a Folder “CS101” (or “CS201”). Inside, create
folders “Classwork” and “Homework”. You may also want to create
additional folders organized by date.

• Always save your Python script using a file name that accurately
describes the code. For example, Smirnov_homework2_version1.py.

• Do NOT accept the default filenames such as temp.py, untitled0.py, and
so on.

• Save your Python script folder in the corresponding folder (for example,
“Homework”), where you can easily find it later. You may need it later,
or you may need to upload your file.

Coding, first tips, p1

• We generally follow the mainstream conventions as outlined in Python
Enhancement Proposal (PEP): https://www.python.org/dev/peps/pep-0008/

• Add comments to your code:

This is a comment. Python will ignore anything after the #
symbol. (Unless # is placed inside a string!)

• Comments can be very useful if you want to save information for other
people, other programmers or your teacher, or even yourself at a later
date.

• Maintain consistent style throughout your code. For example, use either
‘single-quoted strings’ or “double-quoted strings” throughout your
code. Do not mix. I recommend using double-quoted strings.

• Limit lines to 79 characters. We will explore ways to wrap long lines.

https://www.python.org/dev/peps/pep-0008/

Coding, first tips, p2

• For example, add spaces around math operations:

write “a + b” instead of “a+b”

• Add a space after a comma, colon, semicolon (but note before):

write “a, b = 1, 2” instead of “a,b=1,2”

• Avoid unnecessary spaces (or extra spaces at the end of a line):

write “month = 9” instead of “month = 9 ”

• Name your variables, functions, classes, and so on in a way that makes
intuitive sense. For example,

write: name = “Oleg” instead of n = “Oleg”

• Use spaces instead of tabs, when writing code.

To Be Continued

Homework advice

• If a question requires a specific answer, use print(), for example:

print(type(“my_string”))

• print() may also be used for longer answers or to print your clarification
if something does not work, for example:

print(“multiplying a string by a float gives me an error”)

• If you think your code needs clarification, you can add a comment. Write
in proper English and complete sentences.

• Ideally, I should be able to execute your script without any errors. If you
cannot fix a problem, you need to add a comment to your code with an
explanation.

• If something does not work, do not give up. Do your best and submit
whatever things your tried (even if they do not seem to work).

Objects and variables, p1

• In Python, when you create a variable, you actually create an object and
a reference to it: for example, a = 5, where 5 is an object and a is a
reference to it (you can think of a reference as a name).

• If you create another variable b = 5, it will be pointing to the same
object!

• In Python you don’t need to declare what kind of an object it is. Python
assigns a type to the object automatically based on the content. (Yes, it
is that smart)

• In many cases, you can change the type of a variable if you want, in
which case you will create a new object!

• If you change the value of a variable, you create a new object!

Objects and variables, p2

• id() shows the unique integer identification of any object: id(a).

• Try different examples to see that variable names are like stickers or
labels.

• Are there objects without labels? Not for long. For example,

a = 5 (creates an object with value 5 and reference a)

a = 6 (creates a new object with value 6, the object above with
value 5 becomes “garbage” since there is no reference to it)

• Python removes garbage to free memory (“garbage collection”)

• Note on variable names: can only contain numbers, letters, and
underscore (“_”); cannot start with a number; case sensitive.

Python Data Types, p1

name = “John Smith” String

year = 2019 Integer

Pi = 3.14159 Float

Pi = “3.14159” String

result = True
result = False

Boolean

result = “True” String

Python Data Types, p2

str() Convert to string
Almost anything can be converted
Cannot convert variables which are not defined: str(a), a not defined
Cannot convert math expressions which yield an error: str(10/0)

Int() Convert to integer
Can convert strings without decimal part: int(‘5’)
Cannot convert strings with decimal part: int(‘5.5’) is an error
Cannot convert strings that do not look like an integer: int(‘ok”) error
Can convert a Boolean and float (rounding down): int(True), int(5.5)

float() Convert to a floating point number (number with a decimal part)
Can convert a string that looks like a number: float(‘5.5’)
Can convert a Boolean and integer: float(True), float(5)

bool() Converts to a Boolean, which is either True or False
Most variables are seen as True, with a few exceptions such as bool(0)

type() The result is the type of what is inside parenthesis
(Returns the type of the argument)

Python Data Types, p3

String + String
String * Integer
String * Bool

String

Integer + Integer
Integer * Integer

Integer

Integer / Integer (even if no remainder)
Integer + Float
Integer * Float

Float

String + Integer
String + Float
String + Bool
String * Float
String / Integer

Errors

Bool + Integer
Bool + Float

Integer
Float

