
School Nova
Computer Science

First Semester overview
Sets and Dictionaries

12/15/2019
By Oleg Smirnov

First semester core topics and commands, p1

• Using Python editor, saving your code in a file, running your code

• Arithmetic operators

• Comparison operators

• Logical operators: and, or, not

• String, integer, float, Boolean: definitions and basic operations

• Str(), int(), float(), bool(), type(), id()

• Print() and f-strings

• Input()

• Try-except-else structure, purpose, application

• Iteration: while, continue, break

• Iteration: for loop, range(), len()

First semester core topics and commands, p2

• Conditional: if else, if elif else

• Lists: format, indexing, slicing, nested list

• List operations: append, extend, remove, insert, pop, del, in, not in

• List copy() and deepcopy(). Difference between ‘=’ and copy()

• Differences between lists, tuples, sets, and dictionaries

• Type conversion: list(), tuple(), set(), dict(). Empty data structures.

• Set methods: union(), update(), intersection(), difference(), and so on*

• Dictionary: using/updating keys, accessing/adding elements

• Dictionary methods: get(), items(), keys(), pop(), update(), values() *

* you don’t need to memorize all the methods but you should know of their
existence and be able to use with a reference such as
https://docs.python.org/3.8/library/stdtypes.html#set

https://docs.python.org/3.8/library/stdtypes.html#set

Core data structures recap

List: ordered (index) and mutable;

[2, 4, 6] can contain any object
can be nested

Tuple: ordered (index) and immutable;

(2, 4, 6) can contain any object
can be nested

Set: unordered (no index) and mutable;

{2, 4, 6} contains unique and immutable objects
can NOT be nested

Dictionary: unordered and mutable; BUT
{"two": 2, "four": 4} can by indexed a “key”; “keys” must be immutable

can contain any object
can be nested

Core set methods (part 1)

x = {1, 2, 3} => {1, 2, 3}

x.add(5) => {1, 2, 3, 5}

x.discard(2) => {1, 3, 5}

x.remove(1) => {3, 5}

Note: discard is better than remove since no error if the element is absent

x.update([8]) => {3, 5, 8}

Note: for update, the argument must be an iterable object, [8], {8}, or (8,)

x.copy() => {3, 5, 8} # returns a shallow copy

y = x => {3, 5, 8}

Note: ‘=‘ creates another reference to the same object. Changing x you also
change y and vice versa.

x.pop() => {3, 5} or {3, 8} or {5, 8}

Note: for sets, the pop method removes a random element only; does not accept
an argument

x.clear() => { } # empty set

Core set methods (part 2)

x.isdisjoint(y) True if sets x and y do NOT have an intersection

True if: x = {1, 2}, y = {3, 4}

x.issubset(y) True if x is a subset of y

True if: x = {1, 2}, y = {1, 2, 3, 4}

x.issuperset(y) True if x contains y

True if: x = {1, 2, 3, 4}, y = {1, 2}

x.intersection(y) Returns a set that is the intersection of x and y

if x = {1, 2, 3}, y = {2, 3, 4} => {2, 3}

x.union(y) Return a set that is the union of x and y

if x = {1, 2, 3}, y = {2, 3, 4} => {1, 2, 3, 4}

x.difference(y) Returns a set that is the difference between x and y

(that is, removes the intersection of x and y from x)

x = {1, 2, 3}, y = {2, 3, 4} => {1}

x.symmetric_difference(y) Returns a set which is a union of
x.difference(y) and y.difference(x)

x = {1, 2, 3}, y = {2, 3, 4} => {1, 4}

Core dictionary methods

D = {"name": "Canada", "capital": "Ottawa", "population": 37.6, "area": 3.86}
D[“area”] or D.get(“area”) => returns 3.86
D[“area”] = 3.87 => changes the value

for i in D: print(i) for i in D: print(D[i])
Name Canada
Capital Ottawa
Population 37.6
area 3.86

D[“largest city”] = “Toronto” # adds a new entry to the dictionary, as long as
the “largest city” is a new key

del D[“population”] # deletes a key and its value

Many standard list and set methods work with dictionaries, for example:
in, not in, pop(), clear(), copy(), update(), len(), and so on.

