
School Nova
Computer Science

Lists, Tuples, Sets, Dictionaries

12/08/2019
By Oleg Smirnov

Overview

List: ordered (index) and mutable;

[2, 4, 6] can contain any object
can be nested

Tuple: ordered (index) and immutable;

(2, 4, 6) can contain any object
can be nested

Set: unordered (no index) and mutable;

{2, 4, 6} contains unique and immutable objects
can NOT be nested

Dictionary: unordered and mutable; BUT
{"two": 2, "four": 4} can by indexed a “key”; “keys” must be immutable

can contain any object
can be nested

Type conversion

name = "School Nova"

print(list(name))

print(tuple(name))

print(set(name))

can't use dictionary(name)!

Output:

['S', 'c', 'h', 'o', 'o', 'l', ' ', 'N', 'o', 'v', 'a']

('S', 'c', 'h', 'o', 'o', 'l', ' ', 'N', 'o', 'v', 'a')

{'a', 'o', 'c', ' ', 'l', 'h', 'N', 'v', 'S'}

Empty and single item data structures

Empty:

empty_list = [] empty_list = list()

empty_tuple = () empty_tuple = tuple()

empty_set = {} empty_set = set()

empty_dictionary = {} empty_dictionary = dictionary()

Single item:

X = [1]

X = (1) # this is just an integer!

X = (1,) # this is a tuple

X = 1, # this is also a tuple

X = {1}

X = {"one": 1}

Lists versus tuples, p1

Very similar BUT

because lists are mutable and tuples are immutable

you can NOT do some things with tuples

that you can do with lists.

Cannot change tuples in any way (for example, cannot append or extend,
cannot change individual elements).

Can change mutable objects inside tuples (nested tuples); for example:
nested_tuple = (1, 2, [5, 6])

nested_tuple[2][1] = 7 # replaces 6 with 7

Lists versus tuples, p2

Why ever use tuples if there are lists??

1) Tuples are faster.

2) Tuples make sense when individual elements never change (for
example, chess board or geographical coordinates).

3) Tuples, unlike lists, can be used when immutable objects must be
used: for example, elements of a set or dictionary keys (see the Overview
slides above).

