GAME NUMBERS 4

1. Initial Theorems

Theorem 1 (P position). If a position can move to a P position, then it is an N position. If a position has no moves to a P position, then it is a P position. Additionally, the 0 game, or the empty game, is a position, and every other position is either P or N.

Theorem 2 (Symmetry). Given any game position G, the game position $G+G$ is a P-position.
Definition 1 (equivalence). Two game positions G and H are said to be equivalent if $G+H$ is a P-position. In this case, we write $G=H$.

Theorem $3(\mathrm{P}=0)$. Any P-position is equivalent to the 0 position.
Theorem 4 (0 addition). Given any game position G, we have $G+0=G$.
Theorem 5 (Arithmetic Symmetry). $G+G=0$ for any game position G.
Theorem 6 (Arithmetic). Given any game positions A, B, C, we have:
$A=B$ if and only if $A+C=B+C$.
$A=B$ and $B=C$ implies $A=C$.
$A+B=B+A$.
$(A+B)+C=A+(B+C)$.

2. One-Pile Nim

Recall the game of Nim. In Nim, one has piles of stones, and one can take as many stones from a single pile as one wants. What if there is only one pile? This is a trivial version of the game - the winning strategy is clearly to just take all the stones. So this game is easily understood. Or so it seems.

One-pile Nim with zero stones in it is the 0 game, which we call $\operatorname{Nim}(0)$. It is a P position. Also, by Theorem 3, all P positions are equal to $\operatorname{Nim}(0)$. Then, we can deduce that all P positions are therefore equal to eac other.

All game positions are P positions or N positions. If all P positions are equal to each other, then are all N positions equal to each other?

Recall that a position is an N position if the first player can win. In one-pile nim, the first player always wins as long as there are more than zero stones. So $\operatorname{Nim}(x)$ is an N position for all $x>0$. Are all these N positions equal to each other?

One can deduce, for example, that $\operatorname{Nim}(1) \neq \operatorname{Nim}(2)$. Also, $\operatorname{Nim}(1) \neq \operatorname{Nim}(3), \operatorname{Nim}(2) \neq \operatorname{Nim}(3)$, etc. Ultimately, it's possible to prove that $\operatorname{Nim}(x)=\operatorname{Nim}(y)$ only if $x=y$. Therefore, different Nim piles are unequal.

Therefore, there are many different N positions, even though there is essentially only one P position.

3. Nim Theorem

Here's the kicker: one-pile Nim covers all possible N positions. In fact, together with $\operatorname{Nim}(0)$ which covers P positions, one-pile Nim covers all possible game positions.

Theorem 7 (Nim Theorem). Given any game positioon G, if G is an N position, then $G=N i m(x)$ for some whole number $x \geq 0$.

This theorem is also called the Sprague-Grundy theorem.
The number x that a game position is equivalent to is called its nimber.
Definition 2 (Nimber). Given a game position G, if $G=\operatorname{Nim}(x)$, then x is the nimber of G.
From here forward, we can just use numbers to represent nimbers. Since all our arithmetic is with games, when I write $G=4$, take this to mean that G has nimber 4 , or that $G=\operatorname{Nim}(4)$.
4. More Arithmetic

$$
\begin{gathered}
1+4=5 \\
1+5=4 \\
1+6=7 \\
1+7=6 \\
1+8=9 \\
1+9=8 \\
2+4=6 \\
7=6+1=4+2+1 \\
6=4+2 \\
5=4+1 \\
4=4 \\
3=2+1 \\
2=2 \\
1=1 \\
0=0 \\
7+6=?
\end{gathered}
$$

