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Collinearity and Concurrence. Quadrangles. 

Quadrangles. Varignon’s theorem.  

Definition. A polygon is a geometrical figure consisting of a number of points 

(vertices) and an equal number of line segments (edges, or sides) connecting 

these points; if set of vertices is cyclically ordered, then no three successive 

points with the corresponding segments are collinear.  In other words, a 

polygon is a closed broken line in a plane. A polygon with 𝑛 vertices is called 

𝑛-gon.  

Definition. A simple polygon is a polygon whose edges do not intersect. If 

edges of a polygon do intersect, we obtain self-intersecting polygon, such as 

star polygon.  

All triangles are simple polygons. This, however, is not the case for 

quadrangles (note, not every quadrangle is a quadrilateral!) and other 𝑛-gons. 

Two sides of a quadrangle that share a vertex are adjacent. Sides that do not 

have common vertex are opposite. Two vertices of a quadrangle that belong to 

a common side are adjacent; the other two are opposite. Diagonals are the 

lines joining the pairs of opposite vertices. In quadrangles 𝐴1𝐴2𝐴3𝐴4 shown in 

the figure below, 𝐴1𝐴3 and 𝐴2𝐴4 are diagonals.  

 

In a convex quadrangle, both diagonals are inside; in a concave (re-entrant) 

quadrangle one diagonal is inside and one outside; in a self-intersecting 

(crossed) quadrangle, both diagonals are outside (see figure).  
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The area of a convex quadrangle is the sum of the areas of the two triangles 

into which it is split by a diagonal:  

𝑆𝐴1𝐴2𝐴3𝐴4
= 𝑆𝐴1𝐴4𝐴3

+ 𝑆𝐴3𝐴2𝐴1
= 𝑆𝐴4𝐴3𝐴2

+ 𝑆𝐴2𝐴1𝐴4
 

Note, that we chose to enumerate the vertices in such a way that for a convex 

quadrangle these vertices are named in a counterclockwise order for each 

triangle. If we now make the area of a triangle signed, that is, being positive, or 

negative, depending on whether the vertices of that triangle are named in a 

counterclockwise, or clockwise order, then the same formula would also hold 

for a concave quadrangle.  

 

Exercise. Will the same formula expressing the area of a quadrangle through 

the (signed) areas of the two triangles into which it is split by a diagonal also 

hold for a self-intersecting quadrangle?  

Theorem (Varignon). The figure formed by connecting the midpoints of the 

sides of a quadrangle is a parallelogram, and its area is half that of the 

quadrangle. It is often called the Varignon parallelogram of a quadrangle.  

Exercise. Prove the above theorem.   

Theorem (on concurrence). The segments joining the midpoints of pairs of 

opposite sides of a quadrangle and the segment joining the midpoints of the 

diagonals are concurrent and bisect one another.  

Exercise. Prove the above theorem.   
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Theorem. If a diagonal divides a quadrangle into two triangles of equal area, it 

bisects the other diagonal. Conversely, if one diagonal of a quadrangle bisects 

the other, it bisects the area of the quadrangle.  

Exercise. Prove the above theorem.   

Theorem. If opposite sides, 𝐴1𝐴4 and 𝐴2𝐴3, of a quadrangle 𝐴1𝐴2𝐴3𝐴4 

(extended to) meet at point 𝑂 and 𝐷1 and 𝐷1 are the midpoints of the 

diagonals 𝐴1𝐴3 and 𝐴2𝐴4, then the area of the triangle 𝑂𝐷1𝐷2 is a quarter of 

the area of the quadrangle, 𝑆𝑂𝐷1𝐷2
=

1

4
𝑆𝐴1𝐴2𝐴3𝐴4

 

 

Exercise. Prove the above theorem. 
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Concurrence and mass points (method of the center of mass). 

1. Problem. Prove that medians of a triangle divide one another in the 

ratio 2:1, in other words, the medians of a triangle “trisect” one another 

(Coxeter, Gretzer, p.8). 

Solution. Load vertices 𝐴, 𝐵 and 𝐶 with equal masses, 𝑚. Then, the 

center of mass (COM) of the three masses is at the intersection of the 

three medians, because it has to belong to each segment connecting the 

mass at the vertex of the triangle with the COM of the other two masses, 

i.e. the middle of the opposite side. COM this belongs to all three 

medians and is the centroid, 𝑂 of the triangle. It divides each median in 

the 2:1 ratio because it is a COM of mass 𝑚 at the vertex and a mass 2𝑚 

at the middle of the opposite side.   

  

2. Problem. In isosceles triangle 𝐴𝐵𝐶 point 𝐷 divides the 

side 𝐴𝐶 into segments such that |𝐴𝐷|: |𝐶𝐷| = 1: 2. If 𝐶𝐻 

is the altitude of the triangle and point 𝑂 is the 

intersection of 𝐶𝐻 and 𝐵𝐷, find the ratio |𝑂𝐻| to |𝐶𝐻|.  

Solution.  

a. Using the similarity and Thales theorem. First, let us 

perform a supplementary construction by drawing 

the segment 𝐷𝐸 parallel to 𝐴𝐵, 𝐷𝐸||𝐴𝐵, where point 

𝐸 belongs to the side 𝐶𝐵, and point 𝐹 to 𝐷𝐸 and the 

altitude 𝐶𝐻. Notice the similar triangles, 𝐴𝑂𝐻~𝐷𝑂𝐹, 

which implies, 
|𝑂𝐹|

|𝑂𝐻|
=

|𝐷𝐹|

|𝐴𝐻|
. By Thales theorem, 

|𝐴𝐻|

|𝐷𝐹|
=

|𝐴𝐶|

|𝐴𝐷|
= 1 +

|𝐶𝐷|

|𝐴𝐷|
=

3

2
, and 

|𝑂𝐹|

|𝑂𝐻|
=

|𝐷𝐹|

|𝐴𝐻|
=

2

3
, so that 

|𝐹𝐻|

|𝑂𝐻|
=

|𝐹𝑂|+|𝑂𝐻|

|𝑂𝐻|
=

5

3
. 

|𝐶𝐻|

|𝑂𝐻|
=

|𝐶𝐻|

|𝐹𝐻|

|𝐹𝐻|

|𝑂𝐻|
= 3 ∙

5

3
= 5, because 

|𝐶𝐻|

|𝐹𝐻|
= 1 +

|𝐶𝐹|

|𝐹𝐻|
= 1 +

|𝐶𝐷|

|𝐷𝐴|
. Therefore, the sought ratio 
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is, 
|𝑂𝐻|

|𝐶𝐻|
=

1

5
.  

b. Using the Method of the Center of Mass. Load vertices 𝐴, 𝐵 and 𝐶 

with masses 2𝑚, 2𝑚, and 𝑚, respectively. Then, 𝐻 is the COM of 

masses at 𝐴 and 𝐵, and 𝐷 is the COM of masses at 𝐴 and 𝐶, and 𝑂 is 

the COM of all 3 masses in the vertices of the triangle 𝐴𝐵𝐶. Therefore, 

|𝑂𝐶|: |𝑂𝐻| = (2𝑚 + 2𝑚): 𝑚 = 4: 1, |𝑂𝐻|: |𝐶𝐻| = 1: 5.  

3. Problem. Point 𝐷 belongs to the continuation 

of side 𝐶𝐵 of the triangle 𝐴𝐵𝐶 such that 

|𝐵𝐷|  =  |𝐵𝐶|. Point 𝐹 belongs to side 𝐴𝐶, and 

|𝐹𝐶|  =  3|𝐴𝐹|. Segment 𝐷𝐹 intercepts side 

𝐴𝐵 at point 𝑂. Find the ratio |𝐴𝑂|: |𝑂𝐵|.   

Solution.  

a. Using the similarity and Thales theorem. First, let us perform a 

supplementary construction by drawing the segment 𝐵𝐸 parallel to 

𝐴𝐶, 𝐵𝐸||𝐴𝐶, where 𝐸 belongs to the side 𝐴𝐷 

of the triangle 𝐴𝐶𝐷. 𝐵𝐸 is the mid-line of the 

triangle 𝐴𝐶𝐷, and, by Thales, also of 𝐴𝐹𝐷 

and 𝐹𝐷𝐶. Therefore, |𝐸𝐺| =
1

2
|𝐴𝐹|, |𝐺𝐵| =

1

2
|𝐹𝐶| and |𝐸𝐵| =

1

2
|𝐴𝐶|, so 

|𝐵𝐺|

|𝐸𝐺|
=

|𝐹𝐶|

|𝐴𝐹|
= 3. 

On the other hand, again, by Thales, or, 

noting similar triangles 𝐴𝑂𝐹~𝐵𝑂𝐺, 
|𝐴𝑂|

|𝑂𝐵|
=

|𝐴𝐹|

|𝐺𝐵|
= 2

|𝐴𝐹|

|𝐴𝐶|
=

2

3
.  

b. Using the Method of the Center of Mass. Load vertices 𝐴, 𝐶 and 𝐷 

with masses 3𝑚, 𝑚 and 𝑚, respectively. Then, 𝐹 is the center of mass 

(COM) of 𝐴 and 𝐶, 𝐵 is the COM of 𝐷 and 𝐶,  and 𝑂 is the COM of the 

triangle 𝐴𝐶𝐷, |𝐴𝑂|: |𝑂𝐵| =  (𝑚 + 𝑚): 3𝑚 =  2: 3.  
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Theorem (Extended Ceva). Segments (Cevians) 

connecting vertices 𝐴, 𝐵 and 𝐶, with points 𝐴′, 𝐵′ 

and 𝐶′ on the sides, or on the lines that suitably 

extend the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵, of triangle 𝐴𝐵𝐶, 

are concurrent if and only if,  

|𝐴𝐶′|

|𝐶′𝐵|

|𝐵𝐴′|

|𝐴′𝐶|

|𝐶𝐵′|

|𝐵′𝐴|
= 1 

Proof. We have already proven this theorem for the case when points 𝐴′, 𝐵′ 

and 𝐶′ lie on the sides, but not on the lines extending the sides as it is shown in 

the figure. Let us now consider this latter case. Let us first load points 𝐴′, B 

and 𝐶′ with masses 𝑚𝐴′, 𝑚𝐵 and 𝑚𝐶′ such that point 𝐴 is the center of mass for 

𝑚𝐵 and 𝑚𝐶′, 𝑚𝐵|𝐴𝐶′| = 𝑚𝐶′|𝐴𝐵|, and point 𝐶 is the COM for 𝑚𝐴′ and 𝑚𝐵, 

𝑚𝐴′|𝐵𝐶| = 𝑚𝐵|𝐴′𝐶|. Then, the COM of all three masses at the vertices of the 

triangle 𝐴′𝐵𝐶′ is at the point 𝑂, which is the intersection of 𝐴𝐴′ and 𝐶𝐶′. Let 

𝐵𝑂 cross side 𝐴𝐶 at point 𝐵′. Adding mass to vertex 𝐵 would move the COM of 

the three masses along line 𝐵𝑂, because the COM of the initial 3 masses is at 𝑂. 

Let us add another mass 𝑚𝐵 to vertex B, so that the total mass at this vertex is 

2𝑚𝐵.The resulting system of masses then has the same COM as two masses, 

𝑚𝐵 + 𝑚𝐴′ and 𝑚𝐵 + 𝑚𝐶′ at points 𝐴 and 𝐶, respectively. This COM is common 

to 𝐴𝐶 and 𝐵𝑂, and therefore is at point 𝐵′, so (𝑚𝐵 + 𝑚𝐴′)|𝐴𝐵 ′| = (𝑚𝐵 +

𝑚𝐶′)|𝐵′𝐶|. Hence, we obtain, 

|𝐴𝐶′|

|𝐶′𝐵|

|𝐵𝐴′|

|𝐴′𝐶|

|𝐶𝐵′|

|𝐵′𝐴|
=

1

1 +
𝑚𝐶′

𝑚𝐵

(1 +
𝑚𝐴′

𝑚𝐵
)

𝑚𝐵 + 𝑚𝐶′

𝑚𝐵 + 𝑚𝐴′
= 1 
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Theorem (Menelaus). Points 𝐴′, 𝐵′ and 𝐶′ on the sides, or on the lines that 

suitably extend the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵, of triangle ABC, are collinear 

(belong to the same line) if and only if,  

|𝐴′𝐵|

|𝐴′𝐶|

|𝐵′𝐶|

|𝐵′𝐴|

|𝐶′𝐴|

|𝐶′𝐵|
= 1 

Menelaus's theorem provides a criterion for 

collinearity, just as Ceva's theorem provides a 

criterion for concurrence.  

Proof (similarity). The statement could be proven 

with, or without using the method of point masses.  

First, assume the points are collinear and consider 

rectangular triangles obtained by drawing 

perpendiculars onto the line A’B’. Using their 

similarity, one has 

|𝐴′𝐵|

|𝐴′𝐶|
=

ℎ𝐵

ℎ𝐶
,
|𝐵′𝐶|

|𝐵′𝐴|
=

ℎ𝐶

ℎ𝐴
,
|𝐶′𝐴|

|𝐶′𝐵|
=

ℎ𝐴

ℎ𝐵
 

Wherefrom the statement of the theorem is obtained by multiplication 

(Coxeter & Greitzer).  

Proof (point masses). Alternatively, let us load points 𝐴, 𝐴′ and 𝐶 in the upper 

Figure with the point masses 𝑚1, 𝑚2 and 𝑚3, respectively. We select 𝑚1, 𝑚2 

and 𝑚3 such that 𝐵′ is the COM of 𝑚1(𝐴) and 𝑚3(𝐶), and 𝐵 is the COM of 

𝑚2(𝐴′)  and 𝑚3(𝐶). The COM of all 3 masses belongs to both segments 𝐴𝐵 and 

𝐴′𝐵′, which means that it is at point 𝐶′. Then, 

|𝐴′𝐵|

|𝐴′𝐶|
=

𝑚3

𝑚2 + 𝑚3
,
|𝐵′𝐶|

|𝐵′𝐴|
=

𝑚1

𝑚3
,
|𝐶′𝐴|

|𝐶′𝐵|
=

𝑚2 + 𝑚3

𝑚1
 

Wherefrom the Menelaus theorem is obtained by multiplication. The case 

shown in the lower figure is considered in a similar way.   
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Theorem (Pappus). If A, C, E are three points on one line, B, D and F on 

another, and if three lines, AB, CD, EF, meet DE, FA, BC, respectively, then the 

three points of intersection, L, M, N, are 

collinear.  

This is one of the most important theorems in 

planimetry, and plays important role in the 

foundations of projective geometry. There are 

a number of ways to prove it. For example, 

one can consider five triads of points, LDE, 

AMF, BCN, ACE and BDF, and apply Menelaus 

theorem to each triad. Then, appropriately dividing all 5 thus obtained 

equations, we can obtain the equation proving that LMN are collinear, too, 

also by the Menelaus theorem. However, one can prove the Pappus theorem 

directly, using the method of point masses.  

Instead of simply proving the theorem, consider the following problem.  

Problem. Using only pencil and straightedge, continue the line to the right of 

the drop of ink on the paper without 

touching the drop. 

 Solution by the Method of the Center of Mass. 

Construct a triangle OAB, which encloses the drop, and with the vertex O on 

the given line (OD). Let O1 be the crossing point of (OD) and the side AB. Let 

us now load vertices A and B of the triangle with point masses mA and mB, 

such that their center of mass (COM) is at the point O1. Then, each point of the 

(Cevian) segment OO1 is the center of mass of the triangle OAB for some point 

mass mO loaded on the vertex O. The (Cevian) segments from vertices A and B, 

which pass through the center of mass of the triangle C, connect each of these 

vertices with the center of mass of the other two vertices on the opposite side 

of the triangle, OB and OA, respectively.  

For the mass mO1 loaded on the vertex O, the center of mass of the triangle is 

C1, and the centers of mass of the sides OA and OB are A1 and B1, respectively. 

O D



A1

B1

O

mA

mB

A2

B2

A

B

m mO1 O2, 

C1 C2

O1D

(a)

(c)

(b)

C

A1

B1

O

2mA

2mB

A2

B2

A

B

m mO1 O2+
O1D

C

A1

B1

O

mA+mB

A2

B2

A

B

O1D

m mO2 B+

m mO1 A+
(d)

C

A1

B1

O

mA+mB

A2

B2

A

B

O1D

m mO1 B+

m mO2 A+

(e)

C

A1

B1

O

mA+mB

A2

B2

A

B

O1D

m mO1 B+m mO2 A+ +

(f)

C

A1

B1

O

mA+mB

A2

B2

A

B

O1D

m mO1 B+m mO2 A+ +

Similarly, C2, A2 and B2 are those for the mass mO2 on the vertex O. The center 

of mass of the side AB is always at the point O1, independent of mass mO.  

If we can show that segments A1B2 and A2B1 cross the given line (OD) at the 

same point, D, then our problem is solved, as we can draw Cevians BA2 and 

AB2, whose crossing points are on the segment OO1 on the other side of the 

drop, by sequentially drawing Cevians BA1 and AB1 and segments A1B2, B1A2, 

Figure 1(a). 

Let us load vertices O, A and B 

with masses mO1+ mO2, 2mA 

and 2mB, respectively, Figure 

1(b). The center of mass of OAB 

is now at some point C, in-

between C1 and C2 (actually, it 

is not important where it is on 

the line OO1). Let us now move 

point masses mO1 and mA to 

their center of mass A1 on the 

side OA, mO2 and mB to their 

center of mass B2 on the side 

OB, and mA and mB to their 

center of mass O1 on the side 

AB. Now masses are at the 

vertices of the triangle A1B2O1 

with the same center of mass, C, 

Figure 1(c). Consequently, the 

crossing point D of segments 

A1B2 and OO1 is the center of mass for masses mO1+mA and mO2+mB placed at 

points A1 and B2, respectively. Point C then is the center of mass for 

mO1+mO2+mA +mB at point D and mA +mB at point O1, Figure 1(e). Repeating 

similar arguments for the triangle A2B1O1, Figure 1(d,f), we see that point D is 

also the crossing point of segments A1B2 and OO1. Therefore, D is the crossing 

point of all three segments, A1B2, A2B1 and OO1, which completes the proof.  
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The Pappus hexagon formulation. If the six vertices of a hexagon lie 

alternately on two lines, then the three points of intersection of pairs of 

opposite sides are collinear.  

The dual of Pappus theorem states that given one set of concurrent lines A, B, 

C, and another set of concurrent lines a, b, c, then the lines x, y, z defined by 

pairs of points resulting from pairs of intersections A∩b and a∩B, A∩c and 

a∩C, B∩c and b∩C are concurrent. (Concurrent 

means that the lines pass through one point.) 

The Pappus configuration is the configuration of 

9 lines and 9 points that occurs in Pappus's 

theorem, with each line meeting 3 of the points 

and each point meeting 3 lines. This 

configuration is self dual. 

(http://en.wikipedia.org/wiki/Pappus's_hexagon_theorem; http://www.cut-

the-knot.org/pythagoras/Pappus.shtml ). 
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