July 17, 2020. Math 9+. Geometry Revisited and more.
Collinearity and Concurrence. Morley theorem.

Morley’s theorem.

Definition. Three lines trisecting angle ABC into three equal angles are called
trisectors of 2ABC.

Theorem. The points of intersection of the adjacent trisectors of the angles of
any triangle are the vertices of an equilateral triangle.

Proof. Let the adjacent trisectors of
angles BAC and BCA meet at a point B;
and the other two, non-adjacent
trisectors meet at point B, (see figure).
Then, B, is the incenter of the triangle
AB,C and B, B, is the bisector of
£AB,C. Let us now construct an
equilateral triangle A, B, C; where A;
and C; belong to the non-adjacent
trisectors, CB, and AB,, respectively.
In order to prove the theorem, we must prove that BC; and BA; are the
trisectors of the angle ABC.

Exercise. Complete the above proof.

Exercise. Prove the following theorem
(butterfly).

Theorem (butterfly). Through the midpoint
M of a chord PQ of a circle, any other two
chords, AC and BD are drawn. If chords AB
and CD meet PQ at points X and Y, then M is
the midpoint of XY.




Proof. Consider the figure.

Napoleon triangles.

Theorem (butterfly). If triangles are erected externally on the sides of an
arbitrary triangle so that sum of the “remote” angles of these three triangles is
180°, then the circumcircles of these three triangles have a common point.

Proof. Consider the figure.

Theorem. Three equilateral triangles are erected externally on the sides of an
arbitrary triangle ABC. Then, the triangle 0, 0,05 obtained by connecting the
centers of these equilateral triangles is also an equilateral triangle
(Napoleon’s triangle, see Figure).

Solution. Denote |AB| = ¢, |[BC| = a, |AC| = b. Let us find the side |0,05]|.
Express 0,05 = AO; — AQ3, or, 0,05 = = AB + C'03 — ~AC — B'0,.

Note, that B’02| = bg, and C'03| = c?. Also, (E - A_C)) = bc cos «,

(ﬁ - B’OZ) = (R - C’03) = bc?cos(90° +a) = —%bc sin a, and



C'0;-B'0,) = iy cos(180° — a) = — L bc cos a, where &« = BAC. Then,
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Now, using the Law of cosines, 2bc cos @ = b? + ¢? — a?, and the Law of sines,
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|0,05| and |0, 0,|. Hence, triangle 0, 0,05 is equilateral.

Obviously, the same expression holds for the sides

Problem. Let A, B and C be angles of a triangle ABC.
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Solution. Let vectors mi, 71, p be parallel to AC, BA and

H?), respectively, as in the Figure. Then,

(M+n+p)?> =m?+n?+p?—2mncosA — 2np cos B — 2mp cos C
wherefrom immediately follows that,

2mncos A + 2npcos B + 2pmcos C < m? + n? + p2.

The statement in part (a) follows from the above form =n=p = 1.



Problem. Point A’ divides the side BC of the triangle ABC into two segments,
BA' and A'C, whose lengths have the ratio |[BA'|: |A'C| = m:n. Express vector

AA’ via vectors AB and AC. Find the length of the Cevian AA’ if the sides of the
triangle are |AB| = ¢, |BC| = a,and |AC| = b.

Solution. It is clear from the Figure, thatB—A’) = %ﬁ = %3_5, and C_A’) =
" CB=-" (/TE — KE) Therefore, B
m+n m+n

AA' =AC+CA' =AC+—-(AB—AC)=——AB +
m+n m+n
L)

m+n

Or, we can obtain the same result as A

s

AA" = AB + BA' = AB + —(AC — AB) = ——4B + = AC.

For the length of the segment AA’ we have,

- - ——=\? _ n?c?+m?p? 2bc cosBAC . .
|AA'|? = AAT? = (ﬁAB +%Ac) —recrm (:n(j:l))z T Using the
Law of cosines, we write 2bc cos BAC = b? + ¢? — a?, and obtain the final
result,

IAA,lz _ (P*+nm)c?+(mP+nm)b?~(mn)a® _ mb*+nc®>  mna®
B (m+n)? T m+n (m+n)?’

mna?

m4n’

Or, equivalently, (m + n)|BB’|?> = mb? + nc? —

Substitutingm + n = a, we obtain the Stewart’s theorem (Coxeter, Greitzer,
exercise 4 on p. 6).

If AA’ is a median, then |BA|:|A'C| = 1:1,iie.m = n = 1, and we have,
AA = %ﬁ + %A_C), |AA'|? = %bz + %cz — iaz (AA’ is a median).




If AA’ is a bisector, |BA'|:|A'C| = c:b,i.e.m = ¢,n = b, and we obtain

2l _ b 7w, ¢ 7R n2 _ b%c+c?b . bca? . a?
AA’ = 7 AB + 7= AC, as well as |AA'|2 = =22 — 22 = e (1 (b+c)2)
(AA’ is a bisector).




The nine-points circle problem.

Theorem. The feet of the three altitudes of any triangle, the midpoints of the
three sides, and the midpoints of the segments from the three vertices lo the
orthocenter, all lie on the same circle, of radius %2R.
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This theorem is usually credited to a German geometer Karl Wilhelm von
Feuerbach, who actually rediscovered the theorem. The first complete proof
appears to be that of Jean-Victor Poncelet, published in 1821, and Charles
Brianson also claimed proving the same theorem prior to Feuerbach. The
theorem also sometimes mistakenly attributed to Euler, who proved, as early
as 1765, that the orthic triangle and the medial triangle have the same
circumcircle, which is why this
circle is sometimes called "the
Euler circle". Feuerbach
rediscovered Euler's partial result
even later, and added a further
property which is so remarkable
that it has induced many authors
to call the nine-point circle "the
Feuerbach circle".

Proof. Consider rectangles formed by the mid-lines of triangle ABC and of
triangles ABH, BCH and ACH.



Theorem. The orthocenter, H, centroid, M, and the circumcenter, O, of any
triangle are collinear: all these three points lie on the same line, OH, which is
called the Euler line of the triangle. The orthocenter divides the distance from
the centroid to the circumcenter in 2: 1 ratio.

Proof. Note that the altitudes of the medial
triangleM,MgzM, are the perpendicular
bisectors of the triangle ABC, so the
orthocenter of A MyMzM_, is the
circumcenter, O, of A ABC. Now, using the
property that centroid divides medians of a
triangle in a 2:1 ratio, we note that triangles
BMH and MgMO are similar, and homothetic with respect to point M, with the
homothety coefficient 2.

Theorem. The center of the nine-point-circle lies on the (Euler’s) line passing
through orthocenter, centroid, and circumcenter, midway between the
orthocenter and the circumcenter.

Proof. Consider the figure. Note the colored
triangle A, B, C;, which is formed by
medians of triangles ABH, BHC and CHA,
and is therefore congruent to the medial
triangle MyMgM_, but rotated 180 degrees.
The 9 points circle is the circumcircle for
both triangles, which means that rotation
by 180 degrees about the center Oq of the 9 point circle moves A MyMz M,
onto A A, B,C;, and the orthocenter, O, of the A M;MzM_, onto the orthocenter,
H, of the A A, B, C;.




More problems.

Problem. Rectangle DEFG is inscribed in triangle ABC such that the side DE
belongs to the base AB of the triangle, while points F and G belong to sides BC
abd CA, respectively. What is the largest area of rectangle DEFG?

Solution. Notice similar triangles, CDE~ABC,
wherefrom the vertical side of the rectangle is,

_ _ e — |DE]
IDG| = |EF| = |CH| — |CH'| = (1 - 22) ICHI,
so that the area of the rectangle is, Spgpe =
_ _ IoE| _
||Dl|€”DG|| _||DE| (1 |AB||) |C|HI ] |DE]|
DE DE DE DE
o (1- ) 14BlIcH| = 22 (1 - ﬁ) 2Sa5c-

Using the geometric-arithmetic mean

|DE| |DE| 128411081 1
inequality, — (1 — —) < <w> =7

|AB| |AB|

where the largest value of the left side is
|DE]| |DE|

= 1 — —, and therefore
|AB| |AB|’

SpeFc = ESABC. There are a number of other
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@ ¢

x|CH|

D, H| \E
(1-x)ICH|
A 66 H FB
S a6o*Sera*Soec = Sagn*Spec = X7Sap cH(1-X)?S apc > $54c
x2+(1-x)? = 1-x+2x? = $+2(x-3)?) >= %
(b) (@]
C C
D E D E
A 6 C FB A G Fé

DC' || CB, EC' || AC, Spec Spec
S 6o Sera*tSpec = sum of the areas of shaded triangles >= 35 5.

possible solutions, some of which are shown in the figures.

Problem. Prove that for any triangle ABC with sides a, b and c, the area, S <

=(b% + c2).

Solution. Notice that of all triangles with given
two sides, b and c, the largest area has triangle
ABC', where the sides with the given lengths,
|AB| = c and |AC| = b form a right angle,

BAC = 90° (b is the largest possible altitude

to side ¢). Therefore, VAABC, Sypc < Syppc’ =

1 1 b?%+c?
E bc <-
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mean inequality, bc < brre
(b—c)? > 0.
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, where the last inequality follows from the arithmetic-geometric

(or, alternatively, follows from b? + ¢2 — 2bc =



Problem. In an isosceles triangle ABC with the side |AB| = |BC| = b, the
segment |A'C’| = m connects the intersection points of the bisectors, AA" and
CC' of the angles at the base, AC, with the corresponding opposite sides, A’ €
BC and C' € AB. Find the length of the base, |AC| (express through given
lengths, b and m).

Solution. From Thales proportionality theorem we have,

AC BC BA'|+|A'C| A'c
4c) _ | ,|=| |, =1+| ,|—1+ Wherewehave
m  |BA'| |BA| |BA|
. A'c AC AC
used the property of the bisector, 4 ,| = 4% _ 2% e thus
|BA'|  |AB| b
. 1 bm
obtain, |AC| = +—=—.
—-——= b—-m
m b

Problem. Three lines parallel to the respective sides of
the triangle ABC intersect at a single point, which lies
inside this triangle. These lines split the triangle ABC into

R
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6 parts, three of which are triangles with areas S;, S,, and O \L
S3. Show that the area of the triangle ABC, S = /A\ Qz\
2
(\/S1 ++/S2 ++/S3) " (see Figure). A N \p B
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Solution. Denote 2 = ky, 22 = k,, > = k. Then, 2222%
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