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July 10, 2020.     Math 9+. Geometry Revisited and more. 

Collinearity and Concurrence 

Degenerate pedal triangle. Simson lines.  

Definition. The feet of the perpendiculars from any 

point 𝑃 of the plane, inside or outside a triangle (pedal 

point) to the three sides of that triangle are the 

vertices of the pedal triangle. Note: this includes a 

special case of 𝑃 on a circumcircle considered 

below, which corresponds to a degenerate triangle.  

Theorem. If the distances from a pedal point 𝑃 of a 

triangle 𝐴𝐵𝐶 to its vertices are |𝐴𝑃| = 𝑥, |𝐵𝑃| = 𝑦, 

and |𝐶𝑃| = 𝑧 and the sides of the triangle are 

|𝐴𝐵| = 𝑐, |𝐵𝐶| = 𝑎, and |𝐴𝐶| = 𝑏, then the sides of 

the pedal triangle are, 

|𝐵1𝐶1| =
𝑎𝑥

2𝑅
, |𝐶1𝐴1| =

𝑏𝑦

2𝑅
, and |𝐴1𝐵1| =

𝑐𝑧

2𝑅
, 

where 𝑅 is the circumradius of the triangle 𝐴𝐵𝐶.  

Exercise. Prove the above theorem for 

configurations of pedal triangle shown in the 

figures, with pedal point outside of triangle 𝐴𝐵𝐶. Is 

there any difference between the cases of obtuse 

and acute triangle 𝐴𝐵𝐶? 

Proof. Consider the circumcircles of the triangles 

𝐴𝐶1𝐵1, 𝐶1𝐵𝐴1and 𝐵1𝐴1𝐶. Using the extended sine 

theorem for ∆𝐴𝐶1𝐵1, 
|𝐵1𝐶1|

sin 𝐴
= |𝐴𝑃| and 

𝑎

sin 𝐴
= 2𝑅, so |𝐵1𝐶1| = 𝑎

|𝐴𝑃|

2𝑅
. For  

∆𝐶1𝐵𝐴1, 
|𝐴1𝐶1|

sin(180−𝐵)
= |𝐵𝑃|; using 

𝑏

sin 𝐵
= 2𝑅, |𝐴1𝐶1| = 𝑏

|𝐵𝑃|

2𝑅
. 
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Theorem. The feet of the perpendiculars from a point to the sides of a triangle 

are collinear if and only if the point lies on the circumcircle. The line they lie 

on is called Simson line.  

 

Proof. Consider the figure. Note that ∠𝐶1𝑃𝐵1 = ∠𝐵𝑃𝐶 = 180° − ∠𝐵𝐴𝐶, 

wherefrom follows that ∠𝐵𝑃𝐶1 = ∠𝐵1𝑃𝐶. Furthermore,  ∠𝐵𝐴1𝐶1 = ∠𝐵𝑃𝐶1 

and ∠𝐵1𝐴1𝐶 = ∠𝐵1𝑃𝐶 by the inscribed angle theorem. The collinearity of 𝐶1, 

𝐴1, and 𝐵1then follows from the congruence of angles ∠𝐵𝐴1𝐶1 and ∠𝐵1𝐴1𝐶. 

Exercise. Does the proof of the above theorem require any modification when 

Δ 𝐴𝐵𝐶 is obtuse?  

Exercise. Is there a point on the circle that has side 𝐵𝐶 as its Simson line? 

Theorem. If the perpendicular 𝑃𝐵1 from a pedal point 𝑃 to the side 𝐴𝐶 of 

∆𝐴𝐵𝐶 is extended to meet the circumcircle at point 𝐵2, then 𝐵𝐵2 is parallel to 

the Simson line, 𝐶1𝐵1.  

Proof. Consider the figure on the right. By the 

inscribed angle theorem, ∠𝐵𝐵2𝑃 = ∠𝐵𝐶𝑃 =

∠𝑃𝐵1𝐴1, so that 𝐶1𝐵1 and 𝐵𝐵2 make equal 

angles with 𝑃𝐵2 and are therefore parallel.  
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Theorem. The angle between the Simson lines of 

the two points, 𝑃 and 𝑃′ on the circumcircle of 

∆𝐴𝐵𝐶 is half the angular measure of the arc 𝑃𝑃′.  

Proof. Consider the figure. Note that the arcs 𝑃𝑃′ 

and 𝐵2𝐵′2 are equal because 𝑃𝐵2 and 𝑃′𝐵′2 are 

parallel. Using the above theorem, we conclude 

that the angle between the Simson lines of points, 

𝑃 and 𝑃′ equals the angle ∠𝐵2𝐵𝐵′2 and therefore 

half the angular measure of the arc 𝑃𝑃′. 

Exercise. Are there points that lie on their own Simson lines? What are these 

points?  

Exercise. Prove the following theorem.   

Theorem. The Simson line of a points, 𝑃 on the circumcircle of ∆𝐴𝐵𝐶 bisects 

the segment joining that point to the orthocenter of ∆𝐴𝐵𝐶.  

Ptolemy’s theorem 

Theorem. If a quadrilateral 𝐴𝐵𝐶𝐷 is inscribed in a 

circle, the sum of the products of the two pairs of 

opposite sides is equal to the product of diagonals, 

|𝐴𝐵| ∙ |𝐶𝐷| + |𝐵𝐶| ∙ |𝐴𝐷| = |𝐴𝐶| ∙ |𝐵𝐷| 

Proof. Apply theorem expressing the length of the 

sides if a pedal triangle in the degenerate case when 

pedal triangle is a Simson line.  

Theorem. If 𝐴𝐵𝐶𝐷 is not an inscribed quadrilateral, the sum of the products of 

the two pairs of opposite sides is larger than the product of diagonals, 

|𝐴𝐵| ∙ |𝐶𝐷| + |𝐵𝐶| ∙ |𝐴𝐷| > |𝐴𝐶| ∙ |𝐵𝐷| 
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Proof. Apply theorem expressing the length of the sides if a pedal triangle in 

the case when pedal triangle is not a Simson line and then use a triangle 

inequality.  

Exercise. Prove that if a circle cuts two 

sides and a diagonal of a parallelogram 

ABCD at points P, Q, R, as shown in the 

figure, then, 

|𝐴𝑃| ∙ |𝐴𝐵| + |𝐴𝑅| ∙ |𝐴𝐷| = |𝐴𝑄| ∙ |𝐴𝐶| 
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The nine-points circle problem.  

Theorem. The feet of the three altitudes of any triangle, the midpoints of the 

three sides, and the midpoints of the segments from the three vertices lo the 

orthocenter, all lie on the same circle, of radius ½𝑅.  

This theorem is usually credited to a German geometer Karl Wilhelm von 

Feuerbach, who actually rediscovered the theorem. The first complete proof 

appears to be that of Jean-Victor Poncelet, published in 1821, and Charles 

Brianson also claimed proving the same theorem prior to Feuerbach. The 

theorem also sometimes mistakenly attributed to Euler, who proved, as early 

as 1765, that the orthic triangle and the medial triangle have the same 

circumcircle, which is why this 

circle is sometimes called "the 

Euler circle". Feuerbach 

rediscovered Euler's partial result 

even later, and added a further 

property which is so remarkable 

that it has induced many authors 

to call the nine-point circle "the 

Feuerbach circle". 

Proof. Consider rectangles formed by the mid-lines of triangle ABC and of 

triangles 𝐴𝐵𝐻, 𝐵𝐶𝐻 and 𝐴𝐶𝐻.  
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Theorem. The orthocenter, 𝐻, centroid, 𝑀, and the circumcenter, 𝑂, of any 

triangle are collinear: all these three points lie on the same line, 𝑂𝐻, which is 

called the Euler line of the triangle. The orthocenter divides the distance from 

the centroid to the circumcenter in 2: 1 ratio.  

Proof.  Note that the altitudes of the medial 

triangle𝑀𝐴𝑀𝐵𝑀𝐶 are the perpendicular 

bisectors of the triangle 𝐴𝐵𝐶, so the 

orthocenter of Δ 𝑀𝐴𝑀𝐵𝑀𝐶 is the 

circumcenter, 𝑂, of Δ 𝐴𝐵𝐶. Now, using the 

property that centroid divides medians of a 

triangle in a 2:1 ratio, we note that triangles 

𝐵𝑀𝐻 and 𝑀𝐵𝑀𝑂 are similar, and homothetic with respect to point 𝑀, with the 

homothety coefficient 2. 

Theorem. The center of the nine-point-circle lies on the (Euler’s) line passing 

through orthocenter, centroid, and circumcenter, midway between the 

orthocenter and the circumcenter.  

Proof. Consider the figure. Note the colored 

triangle 𝐴1𝐵1𝐶1, which is formed by 

medians of triangles 𝐴𝐵𝐻, 𝐵𝐻𝐶 and 𝐶𝐻𝐴, 

and is therefore congruent to the medial 

triangle 𝑀𝐴𝑀𝐵𝑀𝐶 , but rotated 180 degrees. 

The 9 points circle is the circumcircle for 

both triangles, which means that rotation 

by 180 degrees about the center 𝑂9 of the 9 point circle moves Δ 𝑀𝐴𝑀𝐵𝑀𝐶  

onto Δ 𝐴1𝐵1𝐶1, and the orthocenter, 𝑂, of the Δ 𝑀𝐴𝑀𝐵𝑀𝐶 onto the orthocenter, 

𝐻, of the Δ 𝐴1𝐵1𝐶1.  
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More problems. 

Problem. Rectangle DEFG is inscribed in triangle ABC such that the side DE 
belongs to the base AB of the triangle, while points F and G belong to sides BC 
abd CA, respectively. What is the largest area of rectangle DEFG?   

Solution. Notice similar triangles, 𝐶𝐷𝐸~𝐴𝐵𝐶, 
wherefrom the vertical side of the rectangle is, 

|𝐷𝐺| = |𝐸𝐹| = |𝐶𝐻| − |𝐶𝐻′| = (1 −
|𝐷𝐸|

|𝐴𝐵|
) |𝐶𝐻|, 

so that the area of the rectangle is, 𝑆𝐷𝐸𝐹𝐺 =

|𝐷𝐸||𝐷𝐺| = |𝐷𝐸| (1 −
|𝐷𝐸|

|𝐴𝐵|
) |𝐶𝐻| =

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) |𝐴𝐵||𝐶𝐻| =

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) 2𝑆𝐴𝐵𝐶 . 

Using the geometric-arithmetic mean 

inequality, 
|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) ≤ (

|𝐷𝐸|

|𝐴𝐵|
+1−

|𝐷𝐸|

|𝐴𝐵|

2
)

2

=
1

4
, 

where the largest value of the left side is 

achieved when 
|𝐷𝐸|

|𝐴𝐵|
= 1 −

|𝐷𝐸|

|𝐴𝐵|
, and therefore 

𝑆𝐷𝐸𝐹𝐺 =
1

2
𝑆𝐴𝐵𝐶 . There are a number of other 

possible solutions, some of which are shown in the figures.  

Problem. Prove that for any triangle 𝐴𝐵𝐶  with sides 𝑎, 𝑏 and 𝑐, the area, 𝑆 ≤
1

4
(𝑏2 + 𝑐2).  

Solution. Notice that of all triangles with given 
two sides, 𝑏 and 𝑐, the largest area has triangle 
𝐴𝐵𝐶′, where the sides with the given lengths, 
|𝐴𝐵| = 𝑐 and |𝐴𝐶| = 𝑏 form a right angle, 
𝐵𝐴𝐶̂ = 90° (𝑏 is the largest possible altitude 
to side 𝑐). Therefore, ∀∆𝐴𝐵𝐶, 𝑆𝐴𝐵𝐶 ≤ 𝑆𝐴𝐵𝐶′ =
1

2
𝑏𝑐 ≤

1

2

𝑏2+𝑐2

2
, where the last inequality follows from the arithmetic-geometric 

mean inequality, 𝑏𝑐 ≤
𝑏2+𝑐2

2
 (or, alternatively, follows from 𝑏2 + 𝑐2 − 2𝑏𝑐 =

(𝑏 − 𝑐)2 ≥ 0.  
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Problem. In an isosceles triangle 𝐴𝐵𝐶 with the side |𝐴𝐵| = |𝐵𝐶| = 𝑏, the 

segment |𝐴′𝐶′| = 𝑚 connects the intersection points of the bisectors, 𝐴𝐴′ and 

𝐶𝐶′ of the angles at the base, 𝐴𝐶, with the corresponding opposite sides, 𝐴′ ∈

𝐵𝐶 and 𝐶′ ∈ 𝐴𝐵. Find the length of the base, |𝐴𝐶| (express through given 

lengths, 𝑏 and 𝑚).   

Solution. From Thales proportionality theorem we have, 
|𝐴𝐶|

𝑚
=

|𝐵𝐶|

|𝐵𝐴′|
=

|𝐵𝐴′|+|𝐴′𝐶|

|𝐵𝐴′|
= 1 +

|𝐴′𝐶|

|𝐵𝐴′|
= 1 +

|𝐴𝐶|

𝑏
, where we have 

used the property of the bisector, 
|𝐴′𝐶|

|𝐵𝐴′|
=

|𝐴𝐶|

|𝐴𝐵|
=

|𝐴𝐶|

𝑏
. We thus 

obtain, |𝐴𝐶| =
1

1

𝑚
−

1

𝑏

=
𝑏𝑚

𝑏−𝑚
.  

Problem. Three lines parallel to the respective sides of 

the triangle 𝐴𝐵𝐶 intersect at a single point, which lies 

inside this triangle. These lines split the triangle 𝐴𝐵𝐶 into 

6 parts, three of which are triangles with areas 𝑆1, 𝑆2, and 

𝑆3. Show that the area of the triangle 𝐴𝐵𝐶, 𝑆 =

(√𝑆1 + √𝑆2 + √𝑆3)
2

 (see Figure).  

Solution. Denote 
𝑆1

𝑆
= 𝑘1, 

𝑆2

𝑆
= 𝑘2, 

𝑆3

𝑆
= 𝑘3. Then, 

𝑆1+𝑆2+𝑄3

𝑆
= 𝑘1 + 𝑘2 +

𝑄3

𝑆
=

(√𝑘1 + √𝑘2)
2

, so, 𝑄3 = 2𝑆√𝑘1𝑘2 = √𝑆1𝑆2, 𝑄2 = √𝑆3𝑆1 , 𝑄1 = √𝑆2𝑆3.  
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