
BEYOND INFINITY 5: LARGE NUMBERS AND BIG THEOREMS

JADE NINE

1. Homework

1. In this problem you will prove some details about countability: first, that the countable union of countable sets is
countable, and second, that the finite power of countable sets is countable. Then, you can use these to prove that
ε0 is countable. Lastly, you will prove a useful fact about countable limit ordinals.
(a) Let x be a countable set, whose elements are all countable. Prove that

⋃
x is countable.

(b) Let x be a countable set, and let n ∈ ω. Prove that xn is countable. (To define xn, you can think of it as n
copies of x in Cartesian product like x× ...× x, or you can think of it using the definition of set exponential
that I gave in the first sheet.)

(c) Prove that ε0 is countable.
(d) Prove that, given any countable limit ordinal α, there is a subset S ⊂ α whose order type is ω and whose

union is
⋃
S = α.

2. This problem is about R and cardinality.
(a) Let I be the unit interval, defined as all positive real numbers whose integer part is 0. So, I contains numbers

of the form 0.1, 0.00101, 0.01001000100001..., etc. Prove that |I| = |R|. Do this by proving that a bijection
function exists between the two sets.

(b) Prove that |R× R| = |R|. Do this by proving that a bijection function exists between the two sets.
(c) Prove that |R| = c. This is where the name continuum comes from: the real numbers are the first number line

that we have that is perfectly smoothly continuous (the natural numbers and the integers occur in steps, not
a continuous line - and the rational numbers appear continuous, but in fact there are a lot of missing ‘holes’,
for example

√
2 - I won’t define this precisely, but each irrational number is a ‘hole’, and the real numbers

fills them in). Continuum is the cardinality of the first continuous number line.
(d) Prove that |2ω| = c, where 2ω is defined using the definition of set exponential that I gave in the first material

sheet.
3. The successor-limit strategy of Transfinite Induction. This problem is about a specific strategy of transfinite

induction that I have mentioned: we create a large object by climbing ordinals, but our process for climbing is
different depending on whether the target ordinal is a successor or a limit ordinal.
(a) Define a poset as follows: take the set P(ω), and order these subsets of ω by proper-subset-ness. So, x < y

if x is a proper subset of y. Let’s call this poset P. It is sometimes referred to as the poset of subsets of ω
under inclusion. Let F ⊂ P be the set of all finite subsets of P(ω). Prove that, for every countable ordinal α,
there is a subset of P of order type α.

(b) Let T ⊂ P be defined inductively as follows: for each ordinal α ∈ ω2, if α is a successor ordinal, then add to
T all subsets of ω that are one element bigger than a set already in ω. That is, for all x ∈ T and for all n ∈ ω,
let x ∪ {n} be in T . For limit ordinals α, if α = 0 then T = {∅}, and if α > 0, then let β ∈ α be the biggest
limit ordinal less than α, let m be the smallest natural number that is not in the set that was added to T at
step β, let Z(m) = m · p where p is the smallest prime number not in the prime factorization of m, and then
add to T the set ω \ {k · Z(m)

∣∣k ∈ ω}; so, at the α step, we add only one set to T , and that is the set of
all natural numbers that are not a multiple of Z(m). What’s the tallest well-ordered subset of T? (“Tallest”
means its order type is a bigger ordinal than the order type of any other well-ordered subset of T .)

4. A closer look into ω1.
(a) Define a poset as follows: let O be the set of partial functions whose domain is ω and whose range is an

ordinal; let the order relation be the one described in the Aronszajn tree section of the material sheet. Prove
that this poset is a tree, and prove that it has no uncountable branches.

(b) Describe the ω-level of O, and prove that it is uncountable.
(c) What is the height of O?

5. Aronszajn!
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(a) Define a function g on ω as follows: for each natural number n, write n as 2k · r for an odd number r, and let
g(n) = k · ω + (r − 1)/2. Prove that the range of g is an ordinal, and thus g is in O. What is the range of g?
Which level of O is it in?

(b) Define a function h as follows: for each natural number n = 2k · r for odd r, let h(n) = g(n) if r > 1 and
h(n) = g(

√
n) if r = 1. For which n is h defined? (If

√
n is irrational, then h is undefined.) Prove that h is a

coinfinite element of O in the same level as g.
(c) Let A = O(h) ⊂ O. Let AR = {f ∈ O

∣∣g ∈ A ∧ f =O g}, where =O means that f and g are finite-equivalent
and also in the same level of O. Prove that AR is a tree, and that its levels are all countable. Then prove
that, for each ordinal α that is less than the range of g, the α-level of AR is a subset of the α-level of O (thus,
the levels correspond).

(d) Understand and generalize the concepts in this problem to complete AR into a full Aronszajn tree.

2. ε0

1. Let cα be the αth ordinal that satisfies the equation x · ω = x. So, c0 = 0 is considered the 0th ordinal to satisfy
this equation since 0 · ω = 0; then, c1 is the smallest ordinal after 0 to satisfy this equation, which is ωω. Then c1
is the smallest ordinal larger than c1 to satisfy the equation, etc.
(a) Prove that c1 = ωω. To do this, you must prove both that ωω satisfies the equation, and that no smaller

ordinal other than 0 does.
(b) Determine and describe c2.
(c) Determine and describe cω.
(d) Prove that cω1

= ω1.
(e) Is there any countable ordinal γ such that cγ = γ?

2. This problem concerns ordinal exponentiation with ω involved.
(a) Prove that, given any ordinal α > 1, we have αω > α.
(b) Prove that ωω1 = ω1.
(c) Is there a countable ordinal γ such that ωγ = γ?
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