BEYOND INFINITY 5: LARGE NUMBERS AND BIG THEOREMS

JADE NINE

1. Homework

- 1. In this problem you will prove some details about countability: first, that the countable union of countable sets is countable, and second, that the finite power of countable sets is countable. Then, you can use these to prove that ε_0 is countable. Lastly, you will prove a useful fact about countable limit ordinals.
 - (a) Let x be a countable set, whose elements are all countable. Prove that $\bigcup x$ is countable.
 - (b) Let x be a countable set, and let $n \in \omega$. Prove that x^n is countable. (To define x^n , you can think of it as n copies of x in Cartesian product like $x \times ... \times x$, or you can think of it using the definition of set exponential that I gave in the first sheet.)
 - (c) Prove that ε_0 is countable.
 - (d) Prove that, given any countable limit ordinal α , there is a subset $S \subset \alpha$ whose order type is ω and whose union is $\bigcup S = \alpha$.
- **2.** This problem is about \mathbb{R} and cardinality.
 - (a) Let I be the unit interval, defined as all positive real numbers whose integer part is 0. So, I contains numbers of the form 0.1, 0.00101, 0.01001000100001..., etc. Prove that $|I| = |\mathbb{R}|$. Do this by proving that a bijection function exists between the two sets.
 - (b) Prove that $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$. Do this by proving that a bijection function exists between the two sets.
 - (c) Prove that $|\mathbb{R}| = \mathfrak{c}$. This is where the name *continuum* comes from: the real numbers are the first number line that we have that is perfectly smoothly continuous (the natural numbers and the integers occur in steps, not a continuous line and the rational numbers appear continuous, but in fact there are a lot of missing 'holes', for example $\sqrt{2}$ I won't define this precisely, but each irrational number is a 'hole', and the real numbers fills them in). Continuum is the cardinality of the first continuous number line.
 - (d) Prove that $|2^{\omega}| = \mathfrak{c}$, where 2^{ω} is defined using the definition of set exponential that I gave in the first material sheet.
- **3.** The successor-limit strategy of Transfinite Induction. This problem is about a specific strategy of transfinite induction that I have mentioned: we create a large object by climbing ordinals, but our process for climbing is different depending on whether the target ordinal is a successor or a limit ordinal.
 - (a) Define a poset as follows: take the set $\mathcal{P}(\omega)$, and order these subsets of ω by proper-subset-ness. So, x < y if x is a proper subset of y. Let's call this poset \mathbb{P} . It is sometimes referred to as the poset of subsets of ω under inclusion. Let $F \subset \mathbb{P}$ be the set of all finite subsets of $\mathcal{P}(\omega)$. Prove that, for every countable ordinal α , there is a subset of \mathbb{P} of order type α .
 - (b) Let T ⊂ P be defined inductively as follows: for each ordinal α ∈ ω², if α is a successor ordinal, then add to T all subsets of ω that are one element bigger than a set already in ω. That is, for all x ∈ T and for all n ∈ ω, let x ∪ {n} be in T. For limit ordinals α, if α = 0 then T = {∅}, and if α > 0, then let β ∈ α be the biggest limit ordinal less than α, let m be the smallest natural number that is not in the set that was added to T at step β, let Z(m) = m · p where p is the smallest prime number not in the prime factorization of m, and then add to T the set ω \ {k · Z(m) | k ∈ ω}; so, at the α step, we add only one set to T, and that is the set of all natural numbers that are not a multiple of Z(m). What's the tallest well-ordered subset of T.)
- **4.** A closer look into ω_1 .
 - (a) Define a poset as follows: let \mathbb{O} be the set of partial functions whose domain is ω and whose range is an ordinal; let the order relation be the one described in the Aronszajn tree section of the material sheet. Prove that this poset is a tree, and prove that it has no uncountable branches.
 - (b) Describe the ω -level of \mathbb{O} , and prove that it is uncountable.
 - (c) What is the height of \mathbb{O} ?
- 5. Aronszajn!

Date: July 19, 2020.

- (a) Define a function g on ω as follows: for each natural number n, write n as $2^k \cdot r$ for an odd number r, and let $g(n) = k \cdot \omega + (r-1)/2$. Prove that the range of g is an ordinal, and thus g is in \mathbb{O} . What is the range of g? Which level of \mathbb{O} is it in?
- (b) Define a function h as follows: for each natural number $n = 2^k \cdot r$ for odd r, let h(n) = g(n) if r > 1 and $h(n) = g(\sqrt{n})$ if r = 1. For which n is h defined? (If \sqrt{n} is irrational, then h is undefined.) Prove that h is a coinfinite element of \mathbb{O} in the same level as g.
- (c) Let $A = O(h) \subset \mathbb{O}$. Let $AR = \{f \in \mathbb{O} | g \in A \land f = \mathbb{O} g\}$, where $=^{\mathbb{O}}$ means that f and g are finite-equivalent and also in the same level of \mathbb{O} . Prove that AR is a tree, and that its levels are all countable. Then prove that, for each ordinal α that is less than the range of g, the α -level of AR is a subset of the α -level of \mathbb{O} (thus, the levels correspond).
- (d) Understand and generalize the concepts in this problem to complete AR into a full Aronszajn tree.

2. ε_0

- 1. Let c_{α} be the α^{th} ordinal that satisfies the equation $x \cdot \omega = x$. So, $c_0 = 0$ is considered the 0th ordinal to satisfy this equation since $0 \cdot \omega = 0$; then, c_1 is the smallest ordinal after 0 to satisfy this equation, which is ω^{ω} . Then c_1 is the smallest ordinal larger than c_1 to satisfy the equation, etc.
 - (a) Prove that $c_1 = \omega^{\omega}$. To do this, you must prove both that ω^{ω} satisfies the equation, and that no smaller ordinal other than 0 does.
 - (b) Determine and describe c_2 .
 - (c) Determine and describe c_{ω} .
 - (d) Prove that $c_{\omega_1} = \omega_1$.
 - (e) Is there any countable ordinal γ such that $c_{\gamma} = \gamma$?
- 2. This problem concerns ordinal exponentiation with ω involved.
 - (a) Prove that, given any ordinal $\alpha > 1$, we have $\alpha^{\omega} > \alpha$.
 - (b) Prove that $\omega^{\omega_1} = \omega_1$.
 - (c) Is there a countable ordinal γ such that $\omega^{\gamma} = \gamma$?