BEYOND INFINITY 5: LARGE NUMBERS AND BIG THEOREMS

JADE NINE

1. Homework

1. In this problem you will prove some details about countability: first, that the countable union of countable sets is countable, and second, that the finite power of countable sets is countable. Then, you can use these to prove that ε_{0} is countable. Lastly, you will prove a useful fact about countable limit ordinals.
(a) Let x be a countable set, whose elements are all countable. Prove that $\bigcup x$ is countable.
(b) Let x be a countable set, and let $n \in \omega$. Prove that x^{n} is countable. (To define x^{n}, you can think of it as n copies of x in Cartesian product like $x \times \ldots \times x$, or you can think of it using the definition of set exponential that I gave in the first sheet.)
(c) Prove that ε_{0} is countable.
(d) Prove that, given any countable limit ordinal α, there is a subset $S \subset \alpha$ whose order type is ω and whose union is $\bigcup S=\alpha$.
2. This problem is about \mathbb{R} and cardinality.
(a) Let I be the unit interval, defined as all positive real numbers whose integer part is 0 . So, I contains numbers of the form $0.1,0.00101,0.01001000100001 \ldots$, etc. Prove that $|I|=|\mathbb{R}|$. Do this by proving that a bijection function exists between the two sets.
(b) Prove that $|\mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$. Do this by proving that a bijection function exists between the two sets.
(c) Prove that $|\mathbb{R}|=\mathfrak{c}$. This is where the name continuum comes from: the real numbers are the first number line that we have that is perfectly smoothly continuous (the natural numbers and the integers occur in steps, not a continuous line - and the rational numbers appear continuous, but in fact there are a lot of missing 'holes', for example $\sqrt{2}$ - I won't define this precisely, but each irrational number is a 'hole', and the real numbers fills them in). Continuum is the cardinality of the first continuous number line.
(d) Prove that $\left|2^{\omega}\right|=\mathfrak{c}$, where 2^{ω} is defined using the definition of set exponential that I gave in the first material sheet.
3. The successor-limit strategy of Transfinite Induction. This problem is about a specific strategy of transfinite induction that I have mentioned: we create a large object by climbing ordinals, but our process for climbing is different depending on whether the target ordinal is a successor or a limit ordinal.
(a) Define a poset as follows: take the set $\mathcal{P}(\omega)$, and order these subsets of ω by proper-subset-ness. So, $x<y$ if x is a proper subset of y. Let's call this poset \mathbb{P}. It is sometimes referred to as the poset of subsets of ω under inclusion. Let $F \subset \mathbb{P}$ be the set of all finite subsets of $\mathcal{P}(\omega)$. Prove that, for every countable ordinal α, there is a subset of \mathbb{P} of order type α.
(b) Let $T \subset \mathbb{P}$ be defined inductively as follows: for each ordinal $\alpha \in \omega^{2}$, if α is a successor ordinal, then add to T all subsets of ω that are one element bigger than a set already in ω. That is, for all $x \in T$ and for all $n \in \omega$, let $x \cup\{n\}$ be in T. For limit ordinals α, if $\alpha=0$ then $T=\{\emptyset\}$, and if $\alpha>0$, then let $\beta \in \alpha$ be the biggest limit ordinal less than α, let m be the smallest natural number that is not in the set that was added to T at step β, let $Z(m)=m \cdot p$ where p is the smallest prime number not in the prime factorization of m, and then add to T the set $\omega \backslash\{k \cdot Z(m) \mid k \in \omega\}$; so, at the α step, we add only one set to T, and that is the set of all natural numbers that are not a multiple of $Z(m)$. What's the tallest well-ordered subset of T ? ("Tallest" means its order type is a bigger ordinal than the order type of any other well-ordered subset of T.)
4. A closer look into ω_{1}.
(a) Define a poset as follows: let \mathbb{O} be the set of partial functions whose domain is ω and whose range is an ordinal; let the order relation be the one described in the Aronszajn tree section of the material sheet. Prove that this poset is a tree, and prove that it has no uncountable branches.
(b) Describe the ω-level of \mathbb{O}, and prove that it is uncountable.
(c) What is the height of \mathbb{O} ?
5. Aronszajn!

Date: July 19, 2020.
(a) Define a function g on ω as follows: for each natural number n, write n as $2^{k} \cdot r$ for an odd number r, and let $g(n)=k \cdot \omega+(r-1) / 2$. Prove that the range of g is an ordinal, and thus g is in \mathbb{O}. What is the range of g ? Which level of \mathbb{O} is it in?
(b) Define a function h as follows: for each natural number $n=2^{k} \cdot r$ for odd r, let $h(n)=g(n)$ if $r>1$ and $h(n)=g(\sqrt{n})$ if $r=1$. For which n is h defined? (If \sqrt{n} is irrational, then h is undefined.) Prove that h is a coinfinite element of \mathbb{O} in the same level as g.
(c) Let $A=O(h) \subset \mathbb{O}$. Let $A R=\left\{f \in \mathbb{O} \mid g \in A \wedge f={ }^{\mathbb{O}} g\right\}$, where $={ }^{\mathbb{O}}$ means that f and g are finite-equivalent and also in the same level of \mathbb{O}. Prove that $A R$ is a tree, and that its levels are all countable. Then prove that, for each ordinal α that is less than the range of g, the α-level of $A R$ is a subset of the α-level of \mathbb{O} (thus, the levels correspond).
(d) Understand and generalize the concepts in this problem to complete $A R$ into a full Aronszajn tree.

$$
\text { 2. } \varepsilon_{0}
$$

1. Let c_{α} be the $\alpha^{\text {th }}$ ordinal that satisfies the equation $x \cdot \omega=x$. So, $c_{0}=0$ is considered the 0 th ordinal to satisfy this equation since $0 \cdot \omega=0$; then, c_{1} is the smallest ordinal after 0 to satisfy this equation, which is ω^{ω}. Then c_{1} is the smallest ordinal larger than c_{1} to satisfy the equation, etc.
(a) Prove that $c_{1}=\omega^{\omega}$. To do this, you must prove both that ω^{ω} satisfies the equation, and that no smaller ordinal other than 0 does.
(b) Determine and describe c_{2}.
(c) Determine and describe c_{ω}.
(d) Prove that $c_{\omega_{1}}=\omega_{1}$.
(e) Is there any countable ordinal γ such that $c_{\gamma}=\gamma$?
2. This problem concerns ordinal exponentiation with ω involved.
(a) Prove that, given any ordinal $\alpha>1$, we have $\alpha^{\omega}>\alpha$.
(b) Prove that $\omega^{\omega_{1}}=\omega_{1}$.
(c) Is there a countable ordinal γ such that $\omega^{\gamma}=\gamma$?
