JADE NINE

1. PRACTICE PROBLEMS

- **1.** Prove that $\omega + \omega = 2 \cdot \omega$.
- **2.** Prove that $\omega \cdot \omega$ is a limit ordinal.
- **3.** Calculate $|\mathcal{P}(3)|$.
- 4. Is there a biggest ordinal?

2. PRACTICE PROBLEM SOLUTIONS

- 1. By definition, $\omega + \omega = \{0\} \times \omega \cup \{1\} \times \omega$ under lexicographic ordering (and converted to an ordinal); also by definition, $2 \cdot \omega = 2 \times \omega = \{0, 1\} \times \omega$ under lexicographic ordering (and converted to an ordinal). But $\{0, 1\} \times \omega$ is the set of all ordered pairs of the form (0, t) or (1, t) for $t \in \omega$ this is the same as taking the union of the set of all ordered pairs of the form (0, t) and all ordered pairs of the form (1, t). Essentially, $\{0\} \times \omega \cup \{1\} \times \omega = \{0, 1\} \times \omega$. Any ordered pair in one set must also be in the other set, thus by axiom of extensionality, the sets are equal.
- **2.** We need to prove that $\bigcup \omega \cdot \omega = \omega \cdot \omega$. We can prove this by showing that each set is a subset of the other. Firstly, $\bigcup \omega \cdot \omega \subset \omega \cdot \omega$: suppose $t \in \bigcup \omega \cdot \omega$, then by definition of union, $\exists r \in \omega \cdot \omega(t \in r)$, but because $\omega \cdot \omega$ is an ordinal, $r \in \omega \cdot \omega \implies r \subset \omega \cdot \omega$, thus $t \in r \implies t \in \omega \cdot \omega$. Secondly, $\omega \cdot \omega \subset \bigcup \omega \cdot \omega$: suppose $t \in \omega \cdot \omega$, then as discussed in an example in the materials sheet $\exists n \in \omega(t \in n \cdot \omega)$, but $n \cdot \omega$ is an element of $\omega \cdot \omega$ for all n, thus $t \in n \cdot \omega \implies t \in \bigcup \omega \cdot \omega$.
- **3.** $|\mathcal{P}(3)| = 8$. Any subset of 3 involves 3 choices of elements: for each of 0, 1, 2, you decide that the element is in the subset or it is not; therefore, there are $2 \cdot 2 \cdot 2$ total possibilities for picking a subset, and $2 \cdot 2 \cdot 2 = 8$.
- 4. No; suppose α is an ordinal, then the successor of α , given by $\alpha + 1 = \alpha \cup \{\alpha\}$, is an ordinal bigger than α . (This is similar to the proof that there is no biggest finite number: given any number, you can add 1 to get a bigger number.)

3. Homework Problems

- 1. This problem concerns noticing some facts about ordinal arithmetic.
 - (a) Prove that for any ordinals α , β , which are both larger than 0, $\alpha + \beta$ can never be equal to α .
 - (b) Find and describe a pair of ordinals α , β larger than 0 such that $\alpha + \beta = \beta$.
 - (c) Prove that for any ordinals α , β , which are both larger than 1, $\alpha \cdot \beta$ can never be equal to β .
 - (d) Find and describe a pair of ordinals α , β larger than 1 such that $\alpha \cdot \beta = \alpha$.
- 2. This problem is about successor and limit ordinals.
 - (a) What are the successor ordinals in ω ?
 - (b) What are the limit ordinals in $\omega \cdot \omega$?
- 3. This problem concerns infinite ordinals.
 - (a) Is it possible to find a pair of ordinals, α , β , both infinite, such that $\alpha + \beta = \beta$?
 - (b) Prove that any infinite ordinal α can be order-embedded into a proper subset of itself.
- 4. This problem concerns cardinality of infinite ordinals.
 - (a) Prove that, for any infinite ordinal α , $|\alpha + 1| = |\alpha|$.
 - (b) Prove that $|\omega \cdot \omega| = |\omega|$.

4. Bonus Problems

- **1.** What ordinal is $\omega^{[2]}$ with the triangle order $<_{\triangle}$ isomorphic to?
- **2.** Prove that, given an ordinal α such that $\forall t \in \alpha(t+1 \in \alpha)$, that α is a limit ordinal.
- **3.** Is it possible to find a pair of ordinals, α , β , both infinite, such that $\alpha \cdot \beta = \alpha$?
- 4. Given an ordinal α , let $L(\alpha)$ be the subset of all limit elements of α , interpreted as a poset (using the same order that α has). Find and describe an ordinal α such that $L(\alpha)$ is isomorphic to α .

Date: July 19, 2020.