Summer 2020, Math $4 \frac{1}{2}$

## Lesson 6.

## 1. Exponent.

Exponentiation is a mathematical operation, written as $\boldsymbol{b}^{\boldsymbol{n}}$, involving two numbers, the base $b$ and the exponent $n$. When $n$ is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, $\boldsymbol{b}^{\boldsymbol{n}}$ is the product of multiplying $n$ bases:

$$
b^{n}=\underbrace{b \times \cdots \times b}_{n}
$$

In that case, $\boldsymbol{b}^{\boldsymbol{n}}$ is called the $n$-th power of $b$, or $b$ raised to the power $n$.
The exponent indicates how many copies of the base are multiplied together. For example, $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$. The base 3 appears 5 times in the repeated multiplication, because the exponent is 5 . Here, 3 is the base, 5 is the exponent, and 243 is the power or, more specifically, the fifth power of 3, 3 raised to the fifth power, or 3 to the power of 5 .

## Properties of natural exponent:

If the same base raised to the different power and then multiplied:

$$
b^{3} \cdot b^{4}=(b \cdot b \cdot b) \cdot(b \cdot b \cdot b \cdot b \cdot b)=b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b=b^{7}
$$

Or in a more general way:

$$
b^{n} \cdot b^{m}=b^{n+m}
$$

If the base raised to the power of $n$ then raised again to the power of $m$ :

$$
\begin{gathered}
\left(b^{2}\right)^{3}=(b \cdot b)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{2 \cdot 3} \\
\left(b^{m}\right)^{n}=b^{m n}
\end{gathered}
$$

If we want to multiply $b^{n}=\underbrace{b \cdot b \cdot b \cdot b}_{n \text { times }}$ by another $b$ we will get the following expression:

$$
b^{n} \cdot b=\underbrace{b \cdot b \cdot b \ldots \cdot b}_{n \text { times }} \cdot b=\underbrace{b \cdot b \cdot b \cdot b \ldots \cdot b}_{n+1 \text { times }}=b^{n+1}=b^{n} \cdot b^{1}
$$

In order to have the set of power properties consistent, $b^{1}=b$ for any number $b$.

If we multiply $b^{n}$ by 1 , we won't change anything, so we can write

$$
b^{n} \cdot 1=b^{n+0}=b^{n} \cdot b^{0}
$$

In order to have the set of power properties consistent, $b^{0}=1$ for any number $b \neq 0$

If two different bases raised to the same power, then:

$$
\begin{gathered}
(a \cdot b)^{3}=(a \cdot b) \cdot(a \cdot b) \cdot(a \cdot b)=a \cdot a \cdot a \cdot b \cdot b \cdot b=a^{3} b^{3} \\
(a \cdot b)^{n}=a^{n} b^{n}
\end{gathered}
$$

1. 

$2^{3} \cdot 2^{2}=$
$\left(2^{3}\right)^{2}=$
$5^{2} \cdot 5=$
$\left(3^{7}\right)^{2}=$
$2^{5} \cdot 2^{3} \cdot 2=$
$\left(n^{5}\right)^{3}=$
2. Write the following expressions as a product or power:

$$
\begin{gathered}
2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 ; \\
2+2+2+2+2 ; \\
a \cdot a \cdot a ; \\
a+a+a ; \\
\underbrace{x \cdot x \cdot \ldots \cdot x}_{20 \text { times }} ; \\
\underbrace{x+x+\cdots+x}_{20 \text { times }}
\end{gathered}
$$

3. Write the following expressions in a shorter way:

Example: $7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9=7^{3} \cdot 8^{4} \cdot 9^{5}$

$$
\begin{aligned}
& 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 7 \cdot 7 \\
& \underbrace{3 \cdot 3 \cdot \ldots \cdot \underbrace{5 \cdot 5 \cdot \ldots \cdot 5}_{m \text { times }}}_{n \text { times }} \\
& \underbrace{(-4) \cdot(-4) \cdot \ldots \cdot(-4)}_{k \text { times }} \cdot \underbrace{6 \cdot 6 \cdot \ldots \cdot 6}_{l \text { times }}
\end{aligned}
$$

4. Compare the numbers:
a. $5^{3} \quad 5 \cdot 3$
b. $12^{2} \quad 12 \cdot 2$
c. $2^{5} 5^{2}$
d. $3^{4} \quad 4^{3}$
e. $5^{3} \quad 5 \cdot 3$
f. $2^{4} \quad 4^{2}$
5. Compare:
a. $-3^{2} \ldots(-3)^{2}$;
b. $3^{2} \ldots(-3)^{2}$
c. $-3^{3} \ldots(-3)^{3}$
d. $3^{3} \ldots(-3)^{3}$
6. Positive or negative number will be
a. Even power of a positive number.
b. Even power of a negative number.
c. Odd power of a positive number.
d. Odd power of a negative number.
7. Simplify:

$$
\begin{array}{ll}
3 \cdot 3^{4}(-3)^{2} ; & 2 \cdot 3^{2} \cdot 5^{3} \cdot\left(-4 \cdot 3 \cdot 5^{2}\right) \\
2^{5} \cdot 2\left(-2^{2}\right) c^{4-1} c^{3} ; & 0.5 a(-b)^{6} \cdot 10 a^{2} b^{2} \\
5^{3} \cdot 5\left(-5^{5}\right) 5^{3} \cdot 5 ; & \frac{1}{6}(-5)^{3} 5 \cdot 3 \cdot\left(-6 \cdot 5 \cdot 3^{3}\right)
\end{array}
$$

8. Compare:

## Example:

$$
28^{2} \quad 1000 ; \quad 28^{2}=28 \cdot 28<30 \cdot 30=900 ; 900<1000
$$

therefore $28^{2}<1000$
a. $28^{2}$ 1000;
a. $42^{2} \quad 1500$;
b. $48^{2} 3000$;
b. $67^{2} 3500$;
9. Write the number which extended form is written below;
a. $2 \cdot 10^{3}+4 \cdot 10^{2}+5 \cdot 10+8$;
b. $7 \cdot 10^{3}+2 \cdot 10^{2}+0 \cdot 10+1$;
c. $9 \cdot 10^{3}+3 \cdot 10+3$;
e. $4 \cdot 10^{3}+1 \cdot 10^{2}+1 \cdot 10+4$;
10. Evaluate and compare:
a. $2 \cdot 10^{3}$
and $(2 \cdot 10)^{3}$;
b. $3 \cdot 2^{2}$ and $(3 \cdot 2)^{3}$;
c. $2 \cdot 5^{3}$ and $(2 \cdot 5)^{3}$;
b. $12: 2^{2}$ and $(12: 2)^{2}$;
11. Put digits instead of stars to create the true equalities. How many answers does each problem have?
a. $(2 *)^{2}=* * 1$;
b. $(7 *)^{2}=* * * 5$;
c. $(3 *)^{2}=* * * 6$;
d. $(2 *)^{2}=* * 9$;
e. $(* *)^{2}=* * 4$;
12. Simplify the following expressions:
a. $2^{4}+2^{4}$;
b. $2^{m}+2^{m}$;
c. $2^{m} \cdot 2^{m}$;
d. $3^{2}+3^{2}+3^{2}$;
e. $3^{k}+3^{k}+3^{k}$;
f. $3^{k} \cdot 3^{k} \cdot 3^{k}$;

Haw many choices do we have?

There are 5 chairs and 5 kids in the room. In how many ways can kids sit on these chairs? The first kid can choose any chair. The second kid can choose any of the 4 remaining chairs, the third child has a choice between the three chairs, and so on. Therefore, there are $5 \times 4 \times 3 \times 2 \times 1$ ways how all of them can choose their places. Thus obtained long expression, $5 \times 4 \times 3 \times 2 \times$ 1 , can be written as 5 !. By definition:


$$
5 \times 4 \times 3 \times 2 \times 1=5!\quad \text { or } \quad n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1=n!
$$

Write the following expressions as a factorial and vice versa:

Example: $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=7$ !, 4 ! $=4 \times 3 \times 2 \times 1$
$10 \times 9 \times 8 \times \ldots \times 3 \times 2 \times 1=$
$6!=$
$b \times(b-1) \times(b-2) \times \ldots \times 3 \times 2 \times 1=$
$c!=$
13. Simplify the following fractions:
$\frac{5!}{7!}=$
$\frac{n!}{(n-2)!}=$

14. How many different ways are there to put 64 books on the shelf?
15. There are 20 students in the $5^{\text {th }}$ grade. They have to choose a president, and a vice president of the class. How many different ways are there to do it?
16. There are 20 students in the $5^{\text {th }}$ grade. They have to choose a team of two students to go to the math competition. How many different ways are there to do it?

How many different 3-digit numbers can we create using 8 digits, 1, 2, 3, 4, 5, 6, 7, and 8 without repetition of the digits, i.e. such numbers that only contain different digits?
How many different ways are there to choose a team of 3 students out of 8 to participate in the math Olympiad.

What are the similarities in these two problems?
Can you see the difference between them?


In both cases, we have 8 possible ways to choose the first item (digit or student), 7 possible ways to choose the second item, and 6 different ways to choose the third one. So, there are $8 \cdot 7 \cdot 6$ different 3 -digit numbers created from digits $1,2,3,4,5,6,7$, and 8 and $8 \cdot 7 \cdot 6$ different teams of 3 students out of 8 . Or not?
We can create numbers 123, 132, 213, 231, 321, 312 and they are all different numbers. If we chose Mike, Maria, and Jessika, a team of 3 students for the math Olympiad, it doesn't matter in which order we wrote their names.

In the first case, we have 8.7
$\cdot 6$ ways to create a 3 -digit number out of 8 digits. In the second case for each group of 3 kids we will count 6 times ( 3 ! - number of ways to put 3 kids in line) more possible choices than there really are. So the total number of the way to choose the teem is

$$
\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}
$$

17. In the restaurant, there are 3 choices of starters, 4 choices of entrees and 5 choices of tasty desserts in the fix price dinner menu. How many different ways are there to fix a dinner for the restaurant's clients?
18. How many two-digit numbers can be composed from digits $1,2,3$ without repetition of digits?
19. How many two-digit numbers can be composed from digits $1,2,3$, if repetition is allowed?
20. Peter took 5 exams at the end of the year. Grade for exams are A, B, C, D. How many different ways are there to fill his report card?
21. I have 5 new books to read during my 5 days' vacation. I want to read 1 book every day. How many different ways are there for me to read these 5 books? How many ways would be there if I would have only a 3 days' long weekend to read them? In this case I will be able to read only 3 books in total.
