Summer 2020, Math $4\frac{1}{2}$

Lesson 6.

1. Exponent.

Exponentiation is a mathematical operation, written as b^n , involving two numbers, the **base** *b* and the **exponent** *n*. When *n* is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b^n is the product of multiplying *n* bases:

$$b^n = \underbrace{b \times \cdots \times b}_n$$

In that case, b^n is called the *n*-th power of *b*, or *b* raised to the power *n*.

The exponent indicates how many copies of the base are multiplied together. For example, $3^5 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243$. The base 3 appears 5 times in the repeated multiplication, because the exponent is 5. Here, 3 is the *base*, 5 is the *exponent*, and 243 is the *power* or, more specifically, *the fifth power of 3*, *3 raised to the fifth power*, or *3 to the power of 5*.

Properties of natural exponent:

If the same base raised to the different power and then multiplied:

$$b^{3} \cdot b^{4} = (b \cdot b \cdot b) \cdot (b \cdot b \cdot b \cdot b \cdot b) = b \cdot b = b^{7}$$

Or in a more general way:

$$b^n \cdot b^m = b^{n+m}$$

If the base raised to the power of n then raised again to the power of m:

$$(b^2)^3 = (b \cdot b)^3 = (b \cdot b) \cdot (b \cdot b) \cdot (b \cdot b) = b^{2 \cdot 3}$$

 $(b^m)^n = b^{mn}$

If we want to multiply $b^n = \underbrace{b \cdot b \cdot b \dots \cdot b}_{n \text{ times}}$ by another *b* we will get the following expression:

$$b^{n} \cdot b = \underbrace{b \cdot b \cdot b \dots \cdot b}_{n \text{ times}} \cdot b = \underbrace{b \cdot b \cdot b \dots \cdot b}_{n+1 \text{ times}} = b^{n+1} = b^{n} \cdot b^{1}$$

In order to have the set of power properties consistent, $b^1 = b$ for any number b.

If we multiply b^n by 1, we won't change anything, so we can write

$$b^n \cdot 1 = b^{n+0} = b^n \cdot b^0$$

In order to have the set of power properties consistent, $b^0 = 1$ for any number $b \neq 0$

If two different bases raised to the same power, then:

$$(a \cdot b)^3 = (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b) = a \cdot a \cdot a \cdot b \cdot b \cdot b = a^3 b^3$$

$$(a \cdot b)^n = a^n b^n$$

1.

- $2^{3} \cdot 2^{2} =$ $(2^{3})^{2} =$ $5^{2} \cdot 5 =$ $(3^{7})^{2} =$ $2^{5} \cdot 2^{3} \cdot 2 =$ $(n^{5})^{3} =$
- 2. Write the following expressions as a product or power:

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2;$$

$$2 + 2 + 2 + 2 + 2;$$

$$a \cdot a \cdot a;$$

$$a + a + a;$$

$$\underbrace{x \cdot x \cdot \dots \cdot x}_{20 \text{ times}};$$

$$x + x + \dots + x$$

20 times

3. Write the following expressions in a shorter way:

Example: $7 \cdot 7 \cdot 7 \cdot 8 \cdot 8 \cdot 8 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 = 7^3 \cdot 8^4 \cdot 9^5$

$$2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 7 \cdot 7;$$

$$\underbrace{3 \cdot 3 \cdot \dots \cdot 3}_{n \text{ times}} \cdot \underbrace{5 \cdot 5 \cdot \dots \cdot 5}_{m \text{ times}}$$

$$\underbrace{(-4) \cdot (-4) \cdot \dots \cdot (-4)}_{k \text{ times}} \cdot \underbrace{6 \cdot 6 \cdot \dots \cdot 6}_{l \text{ times}}$$
Compare the numbers:
$$a. 5^3 \quad 5 \cdot 3 \qquad b. \quad 12^2$$

$$c. 2^5 \quad 5^2 \qquad d. \quad 3^4$$

- $e. 5^3 5 \cdot 3 \qquad f. 2^4 4^2$
- 5. Compare:

4.

a. $-3^2 \dots (-3)^2$; b. $3^2 \dots (-3)^2$ c. $-3^3 \dots (-3)^3$ d. $3^3 \dots (-3)^3$

 $12 \cdot 2$

4³

- 6. Positive or negative number will be
 - a. Even power of a positive number.
 - b. Even power of a negative number.
 - c. Odd power of a positive number.
 - d. Odd power of a negative number.
- 7. Simplify:
- 8. Compare:

Example:

 28^2 1000; $28^2 = 28 \cdot 28 < 30 \cdot 30 = 900;900 < 1000,$ therefore $28^2 < 1000$ a. 28^2 1000; b. 48^2 3000; a. 42^2 1500; b. 67^2 3500; 9. Write the number which extended form is written below; a. $2 \cdot 10^3 + 4 \cdot 10^2 + 5 \cdot 10 + 8$; b. $7 \cdot 10^3 + 2 \cdot 10^2 + 0 \cdot 10 + 1$; e. $4 \cdot 10^3 + 1 \cdot 10^2 + 1 \cdot 10 + 4$: c. $9 \cdot 10^3 + 3 \cdot 10 + 3$; 10. Evaluate and compare: b. $3 \cdot 2^2$ and $(3 \cdot 2)^3$; a. $2 \cdot 10^3$ and $(2 \cdot 10)^3$; c. $2 \cdot 5^3$ and $(2 \cdot 5)^3$; b. $12: 2^2$ and $(12: 2)^2$; 11. Put digits instead of stars to create the true equalities. How many answers does each problem have? *b*. $(7 *)^2 = *** 5;$ $c. (3*)^2 = *** 6;$ a. $(2*)^2 = **1;$ d. $(2*)^2 = **9;$ $e. (**)^2 = ** 4:$ 12. Simplify the following expressions: d. $3^2 + 3^2 + 3^2$: a. $2^4 + 2^4$: e. $3^k + 3^k + 3^k$: b. $2^m + 2^m$; f. $3^k \cdot 3^k \cdot 3^k$: c. $2^m \cdot 2^m$; Haw many choices do we have?

•

There are 5 chairs and 5 kids in the room. In how many ways can kids sit on these

chairs? The first kid can choose any chair. The second kid can choose any of the 4 remaining chairs, the third child has a choice between the three chairs, and so on. Therefore, there are $5 \times 4 \times 3 \times 2 \times 1$ ways how all of them can choose their places. Thus obtained long expression, $5 \times 4 \times 3 \times 2 \times 1$, can be written as 5!. By definition:

© bnpdesignstudio * www.ClipartOf.com/215425

 $5 \times 4 \times 3 \times 2 \times 1 = 5!$ or $n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1 = n!$

Write the following expressions as a factorial and vice versa:

Example: $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 7!$, $4! = 4 \times 3 \times 2 \times 1$ $10 \times 9 \times 8 \times ... \times 3 \times 2 \times 1 =$ 6! = $b \times (b - 1) \times (b - 2) \times ... \times 3 \times 2 \times 1 =$ c! = 13. Simplify the following fractions: $\frac{5!}{7!} =$ $\frac{n!}{(n-2)!} =$

14. How many different ways are there to put 64 books on the shelf?

- 15. There are 20 students in the 5th grade. They have to choose a president, and a vice president of the class. How many different ways are there to do it?
- 16. There are 20 students in the 5th grade. They have to choose a team of two students to go to the math competition. How many different ways are there to do it?

How many different 3-digit numbers can we create using 8 digits, 1, 2, 3, 4, 5, 6, 7, and 8 without repetition of the digits, i.e. such numbers that only contain different digits? How many different ways are there to choose a team of 3 students out of 8 to participate in the math Olympiad.

What are the similarities in these two problems? Can you see the difference between them?

In both cases, we have 8 possible ways to choose the first item (digit or student), 7 possible ways to choose the second item, and 6 different ways to choose the third one. So,

there are $8 \cdot 7 \cdot 6$ different 3-digit numbers created from digits 1, 2, 3, 4, 5, 6, 7, and 8 and $8 \cdot 7 \cdot 6$ different teams of 3 students out of 8. Or not? We can create numbers 123, 132, 213, 231, 321, 312 and they are all different numbers. If we chose Mike, Maria, and Jessika, a team of 3 students for the math Olympiad, it doesn't matter in which order we wrote their names.

In the first case, we have $8 \cdot 7$

 \cdot 6 ways to create a 3-digit number out of 8 digits. In the

second case for each group of 3 kids we will count 6 times (3! – number of ways to put 3 kids in line) more possible choices than there really are. So the total number of the way to choose the teem is

$$\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}$$

- 17. In the restaurant, there are 3 choices of starters, 4 choices of entrees and 5 choices of tasty desserts in the fix price dinner menu. How many different ways are there to fix a dinner for the restaurant's clients?
- 18. How many two-digit numbers can be composed from digits 1, 2, 3 without repetition of digits?
- 19. How many two-digit numbers can be composed from digits 1, 2, 3, if repetition is allowed?
- 20. Peter took 5 exams at the end of the year. Grade for exams are A, B, C, D. How many different ways are there to fill his report card?
- 21.1 have 5 new books to read during my 5 days' vacation. I want to read 1 book every day. How many different ways are there for me to read these 5 books? How many ways would be there if I would have only a 3 days' long weekend to read them? In this case I will be able to read only 3 books in total.