Lesson № 6

1 Who is this Red Book predator?

(G)

(E)

(T)

(R)

$57+29 \square 57+30$
$72-\boldsymbol{w} \square 69-\boldsymbol{w}$
$98+37 \square 98+35$
$98+\boldsymbol{x} \square 98+(\boldsymbol{x}+1)$
$\boldsymbol{a}+29 \square \boldsymbol{a}+30$
$72+w \square 69+w$
$98-x \square 98-(x+1)$

4 Pick the right diagram for the sets of swans \square and white birds \square.
Give examples for the elements 1,2 , and 3 in the proper diagram.

1. \qquad

Linear, Branching, and Cyclic Algorithms.

Perform the algorithms on the drawing below. Which of these algorithms and why could be called linear, or branching, or cyclic?

6

Look at the cyclic algorithm. Will this program always produce \boldsymbol{x} from any \boldsymbol{a} ?

If a cycle stop condition can never be satisfied for a certain input, the program goes into an infinite loop.

\boldsymbol{a}	4	13	21
\boldsymbol{x}			

Write all 4 possible equalities for the numbers $\boldsymbol{m}, \boldsymbol{n}$, and \boldsymbol{k} according to the diagram.

Angles.

8
Plot another ray originating from point \boldsymbol{A}. Name it ray $[A C)$. Find the smallest part of the plane limited by the two rays, shade it with a pencil.

Two rays with a common origin split a plane into two parts. The smaller part is called angle.

Point \boldsymbol{A} - vertex of the angle
Rays $\boldsymbol{A B}$ and $\boldsymbol{A C}$ - sides of the angle
The angle is denoted in one of the two ways:
$\angle B A C$ or $\angle A$.

9 Name the angles and the drawing in two different ways:

Which of the points $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$, and \boldsymbol{E} are located inside the angle $\angle \boldsymbol{R P Q}$?

Which of the points $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$, and \boldsymbol{E} are located outside the angle $\angle \boldsymbol{R P Q}$?
\qquad
Does line segment [CD] intersect ray [PR)?

11 Use a right angle template to identify the angles that are bigger than right angle.

> $13 \begin{aligned} & \text { Pop Eye decided to draw an } \\ & \text { angle for himself. He plotted }\end{aligned}$ angle $\angle \boldsymbol{S T R}$. Jake the mouse decided to plot a bigger angle for himself and plotted angle $\angle \boldsymbol{Q P X}$.

Did he plot himself a bigger angle?

Is angle $\angle \boldsymbol{S T R}$ located inside angle $\angle \mathbf{Q P X}$?

14
 Find the intersection of straight lines $\boldsymbol{R T}$, and $\boldsymbol{F Q}$.

Label it \boldsymbol{G}.
Plot straight line $\mathbf{G N}$.

Find the intersection of straight lines $Q \boldsymbol{T}$, and $\boldsymbol{R F}$. Label it \boldsymbol{P}.

15
Find the answer without cumbersome calculations:
a). $564+821-319+319-821=$ \qquad
b). $930-509+821-4+509-821+4+7-930=$ \qquad
c). $654-97+218+329-218+97-329-654=$ \qquad
d). $309+629-211+x+211-629-309+7-x=$ \qquad
16 Use the "wild" number line to weigh the grain:

17
You have a 1 liter measure and a 3 liter measure that you can fill to the mark. How can you measure 2 liters exactly into a bucket with no marks?

Grouping and Division:

18
Foxy Tail is treating kangaroos with ice-cream. He gives each kangaroo 2 cones. How many kangaroos can he treat with 12 cones?

Divide the 12 "cones" on the drawing into groups of 2 :

How many groups of 2 did you find?

-

When we grouped the points into groups of 2 we divided them

To express division we write $\mathbf{1 2} \div \mathbf{2}=$ \qquad or $12: 2=$ \qquad
19
Little Joe wants to visit several of his friends and bring each friend a candy. The candy costs 3 mouse coins. He has 15 coins. Divide the 15 points into groups of 3 to see how many friends can Little Joe visit while bringing a candy to each of them.
$15: 3=$ \qquad
Divide the 12 points on each drawing according to the instructions and write down the results of the division:

21 Use the drawings to help yourself to solve a problem:
A. Jake the Mouse wants to buy books with his 8 coins. Each book costs 2 coins. How many books can he buy?
\qquad
$8: 2=$

B. A zoo-keeper need to feed his elephant 4 cabbages a day. He has 20 cabbages in a warehouse. How many days can he do without shopping for more cabbage?
C. How many taxis are needed to take 12 people into airport if each taxi may take 4 passengers?
D. A roller coaster ride at a fair costs 3 tickets. Pop Eye has 9 tickets. How many times can he ride his favorite roller coaster?
E. Every winter day a forest keeper uses 2 stacks of firewood to keep himself warm. He has just bought 16 stacks of firewood at a market. How many days can he stay warm before he needs to get more firewood?

For each expression mark the order of operations and write a program to evaluate it. For each step write the remaining expression by replacing the operation with its result.

$$
(w-1)+(x+4)
$$

$$
\boldsymbol{y}-(3+\boldsymbol{x})+\boldsymbol{p}
$$

1. \qquad
\qquad 1. \qquad
\qquad
2. \qquad
\qquad 2. \qquad
\qquad
3. \qquad
\qquad
4. \qquad

Skip-Counting.

How far can it move in 3 jumps? \qquad
How far is one tree from another? \qquad
How many jumps does the squirrel need to get from one tree to another? \qquad

Skip-counting and Multiplication:

Divide the points on the plot into groups of five.
Count the groups on the drawing. \qquad Count the points on the drawing. \qquad

> When we grope points by 5 we divide them.
> When we count grouped points we skip-count them. Skip-counting is also called multiplication.

We write $5 \times$ \qquad
\qquad or 5 . \qquad $=$ \qquad
Does grouping make it easier to count points? \qquad

Try to divide these points into groups of 5 before counting them.

How many groups of 5 did you count? \qquad
Count points using skip-counting

Did grouping make counting easier?
Express the results of skip-counting via multiplication.

$$
5 \times \ldots=
$$

Express results of dividing points into groups of five:
\qquad : $5=$ \qquad

Expressing Addition of Like Numbers via Multiplication.

Rewrite additions using multiplication:
$4+4+4+4+4+4=$ \qquad
$4+4+\ldots+4=$ \qquad

16 times
$\boldsymbol{a}+\boldsymbol{a}+\boldsymbol{a}+\boldsymbol{a}+\boldsymbol{a}+\boldsymbol{a}=\underline{X}$

12 times
$4+4+4 \ldots+4+4=\underline{X}$

b times

Calculate:
$3+3+3+3+3=$ \qquad therefore $3 \times 5=$ \qquad
$7+7+7+7=$ \qquad therefore $7 \times$ \qquad $=$ \qquad
$4+4+4+4+4=$ \qquad therefore $4 \times$ \qquad $=$ \qquad $8+8+8=$ \qquad therefore $8 \times$ \qquad $=$ \qquad

Multiplication/ Division Table.

29
Compare the skip-counting steps with the entries in the multiplication-division table on the back of your notebook.

30 Use multiplication-division table to find results for multiplication and division:
$6 \times 7=$ \qquad $7 \times 6=$ \qquad $42: 6=$ \qquad $42: 7=$ \qquad
$3 \cdot 7=$ \qquad
$7 \cdot 3=$ \qquad
$21 \div 7=$ \qquad
$21: 3=$ \qquad
$4 \times 5=$ \qquad
$5 \times 4=$ \qquad
$20: 5=$ \qquad
$20: 4=$ \qquad
$8 \cdot 9=$ \qquad
$9 \cdot 8=$ \qquad
$72 \div 8=$ \qquad
$72: 9=$ \qquad

31
Solve the word problems:
A. A rabbit jumps 4 feet at once. How far will it move in 3 jumps? \qquad

B. How many jumps does he need to get to the carrot? \qquad
C. Little Joe can jump 7 dm in one jump. How far can he move in 6 jumps?

D. How many jumps does Little Joe need to move 35 dm ?

Areas of Shapes:

32
How many times does the $1 \mathrm{~cm}^{2}$ square fit into each of the shapes below:

33 Cross out the shapes that have no lines of symmetry. Find the lines of symmetry in the remaining ones:

This shape has 4 lines of symmetry

Which stars are inside the angle $\angle \boldsymbol{R} \boldsymbol{O P}$.

35

Circle the angles that are bigger than right angle:

List these angles by names:

