

Linear, Branching, and Cyclic Algorithms.

5 Perform the algorithms on the drawing below. Which of these algorithms and why could be called *linear*, or branching, or cyclic?

from any *a*?

If a cycle stop condition can never be satisfied for a certain input, the program goes into an infinite loop.

X + 3 NO YES < 15 ? 1 X

7 Write all 4 possible equalities for the numbers *m*, *n*, and **k** according to the diagram.

Angles.

8 Plot another ray originating from point **A**. Name it ray [**AC**). Find the smallest part of the plane limited by the two rays, shade it with a pencil.

Which of the points *A*, *B*, *C*, *D*, and *E* are located inside the angle $\angle RPQ$?

Which of the points *A*, *B*, *C*, *D*, and *E* are located outside the angle $\angle RPQ$?

Does line segment [*CD*] intersect ray

Use a right angle template to identify the angles that are bigger than right angle.

- **15** Find the answer without cumbersome calculations:
- *a*). 564 + 821 319 + 319 821 = _____
- **b).** $930 509 + 821 4 + 509 821 + 4 + 7 930 = _____$
- *c*). 654 97 + 218 + 329 218 + 97 329 654 =_____
- *d*). 309 + 629 211 + x + 211 629 309 + 7 x =_____

16 Use the "wild" number line to weigh the grain:

LKJASDF

17 You have a 1 liter measure and a 3 liter measure that you can fill to the mark. How can you measure 2 liters exactly into a bucket with no marks?

5

Grouping and Division:

15 : 3 = _____

20 Divide the 12 points on each drawing according to the instructions and write down the results of the division:

21 Use the drawings to help yourself to solve a problem:

A. Jake the Mouse wants to buy books with his 8 coins. Each book costs 2 coins. How many books can he buy?

B. A zoo-keeper need to feed his elephant 4 cabbages a day. He has 20 cabbages in a warehouse. How many days can he do without shopping for more cabbage?

C. How many taxis are needed to take 12 people into airport if each taxi may take 4 passengers?

D. A roller coaster ride at a fair costs 3 tickets. Pop Eye has 9 tickets. How many times can he ride his favorite roller coaster?

E. Every winter day a forest keeper uses 2 stacks of firewood to keep himself warm. He has just bought 16 stacks of firewood at a market. How many days can he stay warm before he needs to get more firewood?

22 For each expression mark the order of operations and write a program to evaluate it. For each step write the remaining expression by replacing the operation with its result.

How many jumps does the squirrel need to get from one tree to another?

Skip-counting and Multiplication:

Multiplication/ Division Table.

29 Compare the skip-counting steps with the entries in the multiplication-division table on the back of your notebook.

30 Use multip	olication-division t	able to find results	for multiplication and divi	sion:
6 × 7 =	7 × 6 =	42 : 6 =	42 : 7 =	
3 · 7 =	7 · 3 =	21 ÷ 7 =	21:3=	
4 × 5 =	5 × 4 =	20 : 5 =	20 : 4 =	
8 · 9 =	9 · 8 =	72 ÷ 8 =	72 : 9 =	
31 Solve the v	word problems:			
A. A rabbit jump	s 4 feet at once. He	ow far will it move	in 3 jumps?	
с <u>т</u> ере 0	3			
B. How many jui	mps does he need	to get to the carrot?		
C. Little Joe can	jump 7 dm in one	jump. How far can	he move in 6 jumps?	
	_	×.		
	0	7	·	dm

D. How many jumps does Little Joe need to move 35 dm?

Areas of Shapes:

32 How many times does the 1 cm² square fit into each of the shapes below:

1 cm ²	а		b						
					С				
							d		

List these angles by names: _____