Homework for Lesson № 5

1	
	Express in centimeters:

$$4 \text{ m } 2 \text{ dm } 8 \text{ cm} = \text{cm}$$

$$1 \text{ m } 7 \text{ dm } 4 \text{ cm} = \text{cm}$$

$$5 \text{ m } 3 \text{ dm } 1 \text{ cm} =$$

$$6 \text{ m } 9 \text{ dm } 3 \text{ cm} =$$

Express in meters, decimeters, and centimeters:

828 cm =	m	dm	cm

935 cm =	m	dm	cm

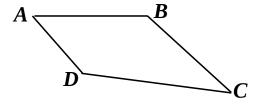
$$316 \text{ cm} = \square \text{ m} \square \text{ dm} \square \text{ cm}$$

$$682 \text{ cm} = \square \text{ m} \square \text{ dm} \square \text{ cm}$$

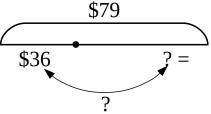
Express the numbers in tens and units and the distances in decimeters and centimeters.

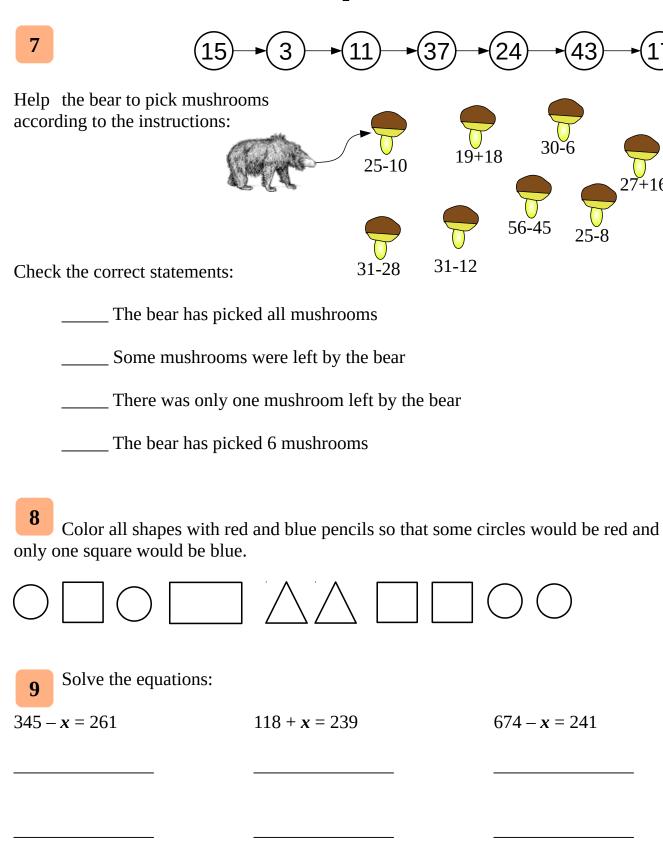
$$405 = \square t \square u$$

4 Measure the edges of the quadrilateral with a ruler and find its perimeter.


$$|AB| = \square$$
 cm

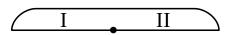
$$|BC| = \bigsqcup_{cm}$$


$$|CD| =$$
 cm

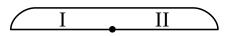

$$|AD| = \square$$
 cm

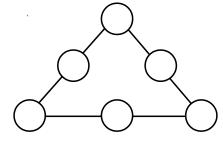
$$\square$$
 cm + \square cm + \square cm = \square cm

Make and solve your own problem using the auxiliary drawing.

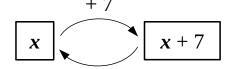


Write the expressions to answer the word problems:


A. In the first quarter a dealer sold *m* cars. In the second quarter he sold *n* cars. How many cars did he sell in half a year?


B. In the first quarter a dealer sold *m* cars. In the second quarter he sold *n* cars. How many more cars than in the first quarter did he sell in the second quarter?

C. A dealer sold *m* cars in first half of the year.. In the first quarter he sold *n* cars. How many cars did he sell in the second quarter?


Write the numbers 1, 2, 3, 4, 5, 6 into the circles so that the sum on the numbers along each side of the triangle would be the same.

12 Ana

Analyze operations and their results:

A. The back operation for adding 7 is _____

Therefore: x + 7 - 7 =_____

B. The back operation for adding *w* is _____

x + 7

Therefore: x + w - w =

C. The back operation for subtracting *w* is _____

x + 7

Therefore: $x - w + w = \underline{\hspace{1cm}}$

1.5

$$a \quad \Box \quad a + c$$

$$a+b$$
 \Box $b+a$

$$38-b \square 68-b$$

$$b \square b-5$$

$$k + 26 \square 62 + k$$

$$a-0$$
 \square $a+0$

$$4 \quad \Box \quad d-d$$

$$54 + n \square 54 - n \qquad c - 19 \square c - 90$$

$$c-19 \quad \Box \quad c-90$$

Mark the order of operations in the expressions: 14

$$9 + a - 4 + 7$$

$$9 + (a - 4) + 7$$

$$9 + a - (4 + 7)$$

$$w - 10 - b + 11$$

$$w - (10 - b) + 11$$

$$w-10-b+11$$
 $w-(10-b)+11$ $(w-10)-(b+11)$

15 Mark the order of operations in the expressions and evaluate them:

$$32 - 10 + 6 - 3 =$$

$$18 + 4 - (8 - 6) =$$

$$32 - (10 + 6) - 3 =$$

$$(18 + 4) - 8 - 6 =$$

$$32 - (10 + 6 - 3) =$$

16 Compare:

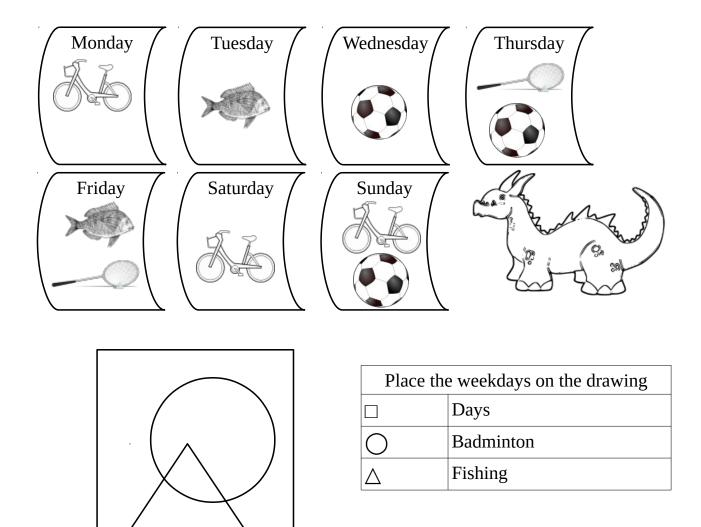
$$x \square x + 3$$

$$x+3 \square x + (3+b)$$
 $x+3 \square x + (3-b)$

$$x + 3 \square x + (3 - b)$$

$$x-3 \square x-3+1$$

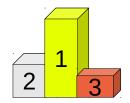
$$x - 3 \square x - (3 + 1)$$


$$x-3 \square x-3+1$$
 $x-3 \square x-(3+1)$ $x-3 \square x-(3-1)$

Continue the number patterns: 17

A little dragon had a week long vocation when he was playing badminton and soccer with other dragons, and biking and fishing by himself. Each day on the calendar is marked with his activity.

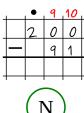
Look at the calendar and fill in the table with YES and NO.


Day	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Badminton AND fishing							
Badminton OR fishing							
Played with others							
Was by himself							

Express the numbers in hundreds and tens, and express the distances in meters and decimeters.

		l
550 =	h	t

Foxy Tail, Jake the Mouse, and Pop Eye medaled in a race. Which medal did each of them earn if Foxy Tail was not the first, and Pop Eye was neither first nor second?


Who likes fish?

566	427	636	452	109

	•	9	10	
	5	0	0	
\vdash		7	3	l

(E)

			-	-	
		Ь	0	0	
			3	4	

H

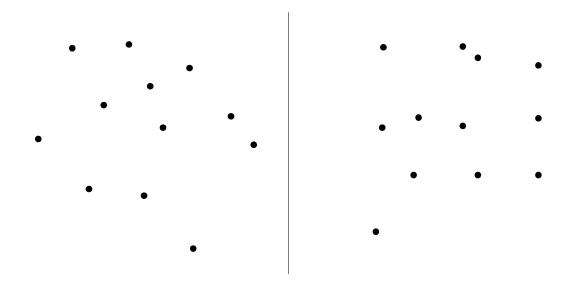
Solve the equations and copy your answers here:

$$x + 147 = 300$$

$$500 - x = 241$$

$$x + 238 = 400$$

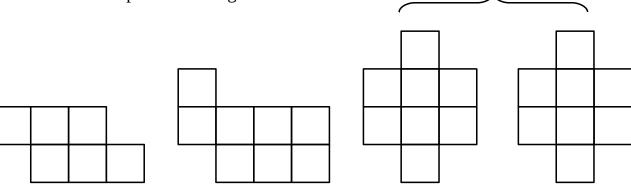
$$700 - x = 629$$

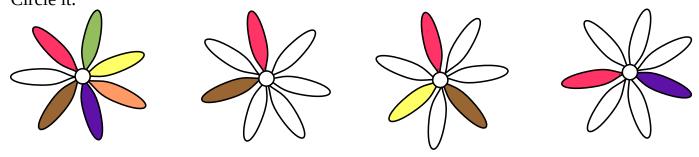

$$x - 136 = 164$$

$$800 - x = 511$$

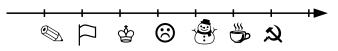
Compare numbers

315 97	437 902	278 872	128 180
8 111	529 521	603 630	700 599


Find which points you need to connect to obtain 2 squares on each drawing.

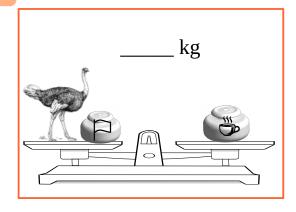

For each expression mark the order of operations and write a program to evaluate it. For each step write the remaining expression by replacing the operation with its result.

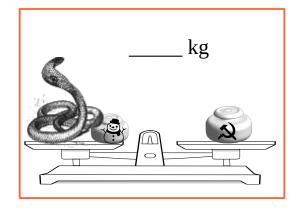
Odder the steps to come up with microwave oven:	an algorithm to cook instant noodles in a
1. Open the lid half way	Cook for 5 minutes in a microwave
Add water to fill line	Mix in the sauce
Remove lid	Remove the sauce packet
Can any steps of this algorithm be swap	pped?
28 Compare using ranking lines:	
A. A snake is faster than a deer. The de	er is faster than an elephant. Who is the fastest?
slow	fast
B. A rock is bigger than a car a car is bigger	igger than a bicycle. Which object is the biggest?
small	big
-	ttle Joe is younger than Jake the Mouse. Jake the Eye is the oldest. Which brother is the youngest?
young	old
Measure the sides of the triangle	and find its perimeter:
AB = cm	\mathcal{A}^{B}
BC = cm	
AC = cm	A
P =	$\tilde{\boldsymbol{C}}$


Split each shape in two identical parts **30** and color these parts red and green:

31 Restore the colors of the petals to see which flower is different from the rest. Circle it.

Write numbers 1, 2, and 3 into the squares appropriately: **32**




$$- \square = \Phi$$

Two ways

$$\bigcirc$$
 \square $=$ \square

Use the same wild axis marked in kilograms to weigh the ostrich and the snake: 33

