Chemical origins of life Miller–Urey, 1953

Stanley L. Miller Harold C. Urey

Test for the occurrence of chemical origins of life by simulating the conditions thought at the time to be present on the early Earth.

After two weeks: ✓ organic compounds ✓ sugars ✓ amino acids NO nucleic acids...

What is life made of?

Approximate <u>elemental composition</u> (% of chemical element by mass)

...vs Earth's crust of a human body... Са Fe OXYGEN AI 45.2% SILICON **OXYGEN** CARBON 27.2% 18%

life is carbon-based

Simple inorganic molecules

Biocentric periodic table of elements

	essential for all					esse	ntial	for	for many be			neficial for many					
			ben	efic	ial fo	for some			no known ber				neficial use				
1 1H	2	All life requires nine macronutrients															18 2He
₃ Li	₄ Be	and MgKZn as intracellular ions)											₆ C	₇ N	₈ O	₉ F	10Ne
11Na	₁₂ Mg	3	4	5	6	7	8	9	10	11	12	13Al	14Si	15P	₁₆ S	17Cl	₁₈ Ar
₁₉ K	₂₀ Ca	₂₁ Sc	₂₂ Ti	23V	24Cr	₂₅ Mn	₂₆ Fe	₂₇ Co	₂₈ Ni	₂₉ Cu	₃₀ Zn	31Ga	32Ge	33As	34Se	35Br	₃₆ Kr
37Rb	38Sr	39Y	40Zr	₄₁ Nb	₄₂ Mo	43Tc	44Ru	45Rh	46Pd	₄₇ Ag	48Cd	49In	₅₀ Sn	₅₁ Sb	₅₂ Te	₅₃ I	₅₄ Xe
55Cs	₅₆ Ba	₅₇ La	₇₂ Hf	₇₃ Ta	74W	75Re	76Os	₇₇ Ir	₇₈ Pt	₇₉ Au	₈₀ Hg	₈₁ Tl	₈₂ Pb	₈₃ Bi	84Po	₈₅ At	86Rn
₈₇ Fr	₈₇ Ra	₈₉ Ac		222	1.0 12	757	14 //		V.F. I	72	210		~	192	2	64	
lanthanides			₅₈ Ce	59Pr	₆₀ Nd	61Pm	₆₂ Sm	₆₃ Eu	₆₄ Gd	₆₅ Tb	₆₆ Dy	₆₇ Ho	68Er	₆₉ Tm	₇₀ Yb	₇₁ Lu	
actinides ^{goTh} ^{g1} Pa [*] ^{g2} U Another eight are essential for many organisms (but not all species)																	

Miller–Urey experiment, 1953: chemical origins of life

Stanley L. Miller Harold C. Urey

- Test for the occurrence of chemical origins of life by <u>simulating the conditions</u> thought at the time to be present on the early Earth.
- The experiment used water (H₂O), methane (CH₄), ammonia (NH₃), and hydrogen (H₂) all sealed inside a sterile loop array of glass flasks; one flask was half-full of liquid water ("ocean") and another flask contained a pair of electrodes. The liquid water was heated to induce evaporation, sparks were fired between the electrodes to simulate "lightning through the atmosphere" and water vapor; then water could condense and trickle back into the first flask in a continuous cycle.
- After two weeks: 10–15% of the carbon was now in the form of organic compounds; >20 amino acids formed; sugars were also formed. However, *nucleic acids were not formed* within the reaction...