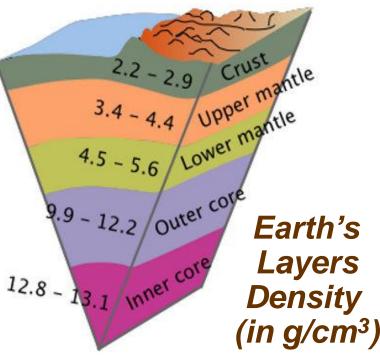
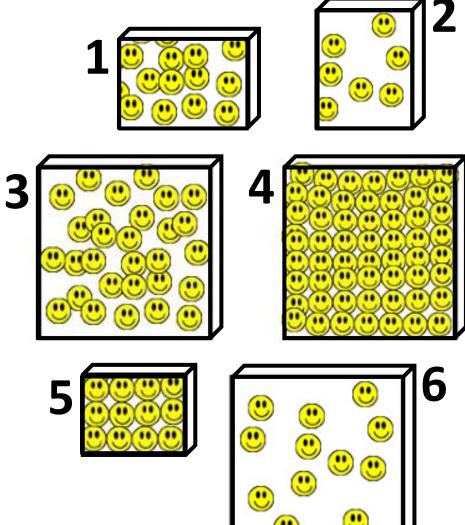

Density

 Density is a measure of <u>how much matter (particles!)</u> is contained in a unit of volume:


$$\rightarrow$$
 density = $\frac{\text{mass}}{\text{volume}}$

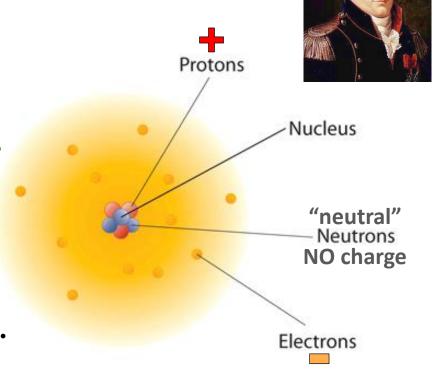
➤ SI unit is kg/m³



- The density of a material varies with temperature and pressure (this variation is typically small for solids and liquids but much greater for gases).
 - In general, lowering the temperature results in density increase
 - Increasing the pressure also results in density increase

Which of the following objects...

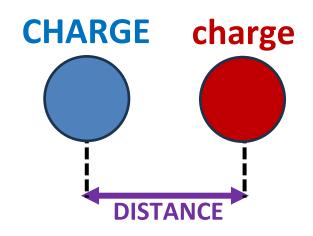
- ...have the same volume?
- ...have the same density?
- ...have different mass?
- ...have different volume?
- ...have the same mass?
- ...have different density?

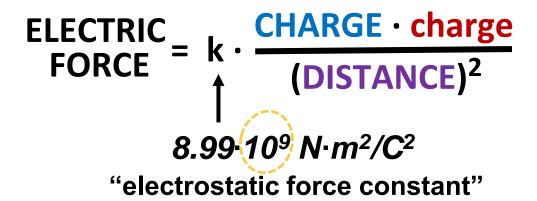

(note: all "atoms" here are the same; all objects have the same thickness)

Charge, + or -, is the basic property of matter that gives rise to all electrical and magnetic forces and interactions.

 In atoms, electrons carry the negative (-) charge, and protons carry the positive (+) charge; neutrons have NO (zero) charge.

• SI unit of charge is Coulomb.


• The charge of a single electron, known as *elementary charge*, is equal to *negative 1.602×10 -19* C.



- The charge of a single proton is the same but positive.
- Matter is usually charge-neutral, meaning the positive and negative charges balance out.

Electromagnetism

is an interaction that occurs between particles that have electric charge

A <u>"strong"</u> force at the atomic level... responsible for binding atoms into molecules and molecules into liquids and solids!

Like charges repel each other

Opposite charges attract each other

States of Matter

Matter can exist in several different forms, or states

of aggregation.

Matter commonly exists in <u>four</u> <u>fundamental</u> states:

>Solid

≻Liquid

≻Gas

≻Plasma

 The different states of matter are based upon <u>distance between particles</u> (atoms and/or molecules), particle <u>arrangement</u>, and <u>energy</u> of particles.