

 STATIC FRICTION Imagine that you try to move a block on a floor by pushing it with force F. The block does not move because of static friction with the floor. That force oppose motion, and will be equal to F to make sure that the block is at rest. However it cannot be bigger than certain maximum value:

$$F_f^{(static)} < \mu_s N$$

Here N is the Reaction Force, and μ_s is called static friction coefficient (normally, $\mu_s < 1$).

• **KINETIC FRICTION** Once the block starts moving, the friction force will stay nearly constant, and equal to $\mu_k N$ (μ_κ is called kinetic friction coefficient, it is smaller than μ_s): $F_f^{(kinetic)} = \mu_k N$

Hooke's Law

When a spring is stretched or compressed, the *restoring force* **F** is proportional to its *deformation*, **x**:

$$F = kx$$

Here **k** is called *spring constant*.

Springs connected "in parallel":

Homework

Problem 1.

All springs on the picture have the same spring constant, k. You need to replace them all with a single spring. What should be its spring constant K?

Problem 2

Let the friction coefficient (both static and kinetic) between car tires and the road surface be μ . Find the minimal time that the car would need to reach speed v, starting from rest. Get the general formula, and compute this time for μ =0.7 (dry road), and μ =0.4 (wet road), if v=100km/hr. Assume a four-wheel-drive car (all wheels are rotated by the motor and pushing the car forward).