
March 2, 2025        Math 9 

Algebra.  

Equivalence relations and partitions.  

Definition. A binary relation on a set 𝐴,  

𝑥~𝑦, 𝑥, 𝑦 ∈ 𝐴 

is a collection of ordered pairs of elements of 𝐴, {(𝑥, 𝑦)}, 𝑥, 𝑦 ∈ 𝐴. In other 
words, it is a subset of the Cartesian product 𝐴2  =  𝐴 ×  𝐴.  

More generally, a binary relation between two sets 𝐴 and 𝐵 is a subset of 
𝐴 ×  𝐵. The terms correspondence, dyadic relation and 2-place relation are 
synonyms for binary relation. 

Example 1. A binary relation > (“is greater than“)  between real numbers 
𝑥, 𝑦 ∈ ℝ associates to every real number all real numbers that are to the left of 
it on the number axis.  

Example 2. A binary relation “is the divisor of “ between the set of prime 
numbers 𝑃 and the set of integers ℤ associates every prime 𝑝 with every 
integer 𝑛 that is a multiple of 𝑝, but not with integers that are not multiples of 
𝑝. In this relation, the prime 3 is associated with numbers that include −6, 0, 
6, 9, but not 2 or -8; and the prime 5 is associated with numbers that include 
0, 10, and 125, but not 6 or 11.  

Injections, surjections, bijections between the sets are established by defining 
the corresponding (injective, surjective, or one-to-one) binary relations 
between the elements of these sets. A relation 𝑥~𝑦  is, 

• left-total:  ∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌, 𝑥~𝑦, a relation is left-total when it is a function, 
or a multivalued function;  

• surjective (right-total, or onto): ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋, 𝑥~𝑦; 

• injective (left-unique): ∀(𝑥1, 𝑥2, ∈ 𝑋, 𝑦 ∈ 𝑌), ((𝑥1~𝑦) ∧ (𝑥2~𝑦)
 

⇒ (𝑥1 = 𝑥2)) 



• functional (right-unique, also called univalent, or right-definite): 

∀(𝑥 ∈ 𝑋, 𝑦1, 𝑦2, ∈ 𝑌), ((𝑥~𝑦1) ∧ (𝑥~𝑦2)
 

⇒ (𝑦1 = 𝑦2)), such a binary relation 

is also called a partial function;  
• one-to-one: injective and functional.  

A binary relation 𝑥~𝑦 is 

• reflexive if ∀𝑥 ∈ 𝐴, we have 𝑥~𝑥 
• symmetric if  ∀𝑥, 𝑦 ∈ 𝐴, we have (𝑥~𝑦)

 
⇒ (𝑦~𝑥)  

• transitive if ∀𝑥, 𝑦, 𝑧 ∈ 𝐴, we have (𝑥~𝑦) ∧ (𝑦~𝑧)
 

⇒ (𝑥~𝑧) 

Definition. An equivalence relation is a binary relation that is reflexive, 
symmetric, and transitive.  

Given an equivalence relation on 𝐴, we can define, for every 𝑎 ∈ 𝐴, its 
equivalence class [𝑎] as the following subset of 𝐴:  

[𝑎] = {𝑥 ∈ 𝐴, (𝑥~𝑎)} 

Definition. A partition of a set 𝐴 is decomposition of it into non-intersecting 
subsets: 

𝐴 =  𝐴1 ∪ 𝐴2 … ∪ 𝐴𝑛 … 

with 𝐴𝑖 ∩ 𝐴𝑗  =  ∅. It is allowed to have infinitely many subsets 𝐴𝑖 .  

Theorem. If ∼ is an equivalence relation on a set 𝐴, then it defines a 
partition of 𝐴 into equivalence classes. 

Example. Define the equivalence relation on ℤ by congruence 𝑚𝑜𝑑 3: 𝑎 ≡
 𝑏 𝑚𝑜𝑑 3 if 𝑎 −  𝑏 is a multiple of 3. This defines a partition, [0] = {. . . , −6, 
−3, 0, 3, 6, . . . }, [1] = {. . . , −2, 1, 4, 7, . . . }, [2] = {. . . , −1, 2, 5, 8, . . . }. 

Exercise 1. Present examples of binary relations that are, and that are not 
equivalence relations. For each of the following relations, check whether it is 
an equivalence relation. 

• On the set of all lines in the plane: relation of being parallel 
• On the set of all lines in the plane: relation of being perpendicular 
• On ℝ: relation given by 𝑥 ∼  𝑦 if 𝑥 +  𝑦 ∈  ℤ 



• On ℝ: relation given by 𝑥 ∼  𝑦 if 𝑥 −  𝑦 ∈  ℤ 
• On ℝ: relation given by 𝑥 ∼  𝑦 if 𝑥 >  𝑦 
• On ℝ − {0}: relation given by 𝑥 ∼  𝑦 if 𝑥𝑦 >  0 

Exercise 2. Let ∼ be an equivalence relation on 𝐴. 

• Prove that if 𝑎 ∼  𝑏, then [𝑎]  =  [𝑏]: ∀𝑥 ∈ 𝐴, 𝑥 ∈ [𝑎]
 

⇒ 𝑥 ∈ [𝑏] 
• Prove that if 𝑎 ≁  𝑏, then [𝑎]  ∩  [𝑏]  =  ∅. 

Exercise 3. Let 𝑓: 𝐴 
𝑓
→  𝐵 be a function. Define a relation on 𝐴 by 𝑎 ∼  𝑏 if 

𝑓 (𝑎) = 𝑓 (𝑏). Prove that it is an equivalence relation.  

Exercise 4. For a positive integer number 𝑛 ∈ ℕ, define relation ≡ on ℤ by 𝑎 ≡
 𝑏 if 𝑎 −  𝑏 is a multiple of 𝑛 

• Prove that it is an equivalence relation; 
• Describe equivalence class [0]; 
• Prove that equivalence class of [𝑎 +  𝑏] only depends on equivalence 

classes of 𝑎, 𝑏, that is, if [𝑎]  =  [𝑎′], [𝑏]  =  [𝑏′], then [𝑎 +  𝑏] = [𝑎′ + 𝑏′]. 

Exercise 5. Define a relation ∼ on ℝ2 = ℝ × ℝ  by (𝑥1, 𝑦1)~(𝑥2, 𝑦2) if 𝑥1 +
𝑦1 = 𝑥2 + 𝑦2. Prove that it is an equivalence relation and describe the 
equivalence class of (1, 2).  

Exercise 6. Is it possible to partition the set of all integers, ℤ, into 
equivalence classes using the binary relation 𝑝~𝑞: 𝑝 ≡ 0𝑚𝑜𝑑(𝑞) (“𝑝 is a 
multiple of 𝑞”), which was defined in Example 2.  

  



Recap: Elements of number theory. Modular arithmetics.  

Definition. For 𝑎, 𝑏, 𝑛 ∈ ℤ, the congruence relation, 𝑎 ≡ 𝑏 mod 𝑛, denotes that, 
𝑎 − 𝑏  is a multiple of 𝑛, or, ∃𝑞 ∈ ℤ, 𝑎 = 𝑛𝑞 + 𝑏.  

All integers congruent to a given number 𝑟 ∈ ℤ with respect to a division by 𝑛 ∈ ℤ 
form congruence classes, [𝑟]𝑛 . For example, for 𝑛 = 3, 

[0]3  =  {. . . , −6, −3, 0, 3, 6, . . . } 

[1]3  =  {. . . , −2, 1, 4, 7, . . . } 

[2]3  =  {. . . , −1, 2, 5, 8, . . . } 

[3]3  =  {. . . , −6, −3, 0, 3, 6, . . . } = [0]3 

There are exactly 𝑛 congruence classes mod 𝑛, forming set 𝑍𝑛 . In the above 
example 𝑛 = 3, the set of equivalence classes is 𝑍3 = {[0]3, [1]3, [2]3}. For 
general 𝑛, the set is 𝑍𝑛 = {[0]𝑛, [1]𝑛, … , [𝑛 − 1]𝑛}, because [𝑛]𝑛 = [0]𝑛.  

One can define addition and multiplication in 𝑍𝑛 in the usual way,  

[𝑎]𝑛 + [𝑏]𝑛 = [𝑎 + 𝑏]𝑛  

[𝑎]𝑛 ∙ [𝑏]𝑛 = [𝑎 ∙ 𝑏]𝑛  

([𝑎]𝑛)𝑝 = [𝑎𝑝]𝑛, 𝑝 ∈ ℕ 

Here the last relation for power follows from the definition of multiplication.  

Exercise. Check that so defined operations do not depend on the choice of 
representatives 𝑎, 𝑏 in each equivalence class.  

Exercise. Check that so defined operations of addition and multiplication 
satisfy all the usual rules: associativity, commutativity, distributivity.  

In general, however, it is impossible to define division in the usual way: for 
example, [2]6 ∙ [3]6 = [6]6 = [0]6, but one cannot divide both sides by [3]6 to 
obtain [2]6 = [0]6. In other words, for general 𝑛 an element [𝑎]𝑛 of 𝑍𝑛  could 
give [0]𝑛 upon multiplication by some of the elements in 𝑍𝑛  and therefore would 
not have properties of an algebraic inverse, so there may exist elements in 𝑍𝑛  



which do not have inverse. In practice, this means that if we try to define an 
inverse element, [𝑟−1]𝑛 , to an element [𝑟]𝑛  employing the usual relation,  
[𝑟]𝑛 ∙ [𝑟−1]𝑛 = [1]𝑛, there might be no element [𝑟−1]𝑛  in class 𝑍𝑛  satisfying this 
equation. However, it is possible to define the inverse for some special values 
of 𝑟 and 𝑛. The corresponding classes [𝑟]𝑛  are called invertible in 𝑍𝑛 .  

Definition. The congruence class [𝑟]𝑛 ∈ 𝑍𝑛  is called invertible in 𝑍𝑛 , if there exists 
a class [𝑟−1]𝑛 ∈ 𝑍𝑛 , such that [𝑟]𝑛 ∙ [𝑟−1]𝑛 = [1]𝑛 . 

Theorem. Congruence class [𝑟]𝑛 ∈ 𝑍𝑛 is invertible in 𝑍𝑛 , if and only if 𝑟 and 𝑛 are 

mutually prime, (𝑟, 𝑛) = 1. Or,  ∀[𝑟]𝑛, (∃[𝑟−1]𝑛 ∈ 𝑍𝑛)
 

⇔ ((𝑟, 𝑛) = 1).  

To find the inverse of [𝑎] ∈ 𝑍𝑛, we have to solve the equation, 𝑎𝑥 + 𝑛𝑦 = 1, which 
can be done using Eucleadean algorithm. Then, 𝑎𝑥 ≡ 1 mod 𝑛, and  [𝑎]−1 =  [𝑥]  

.  

Examples.  

3 is invertible mod 10, i. e. in 𝑍10, because [3]10 ∙ [7]10 = [21]10 = [1]10, but is 
not invertible mod 9, i. e. in 𝑍9, because[3]9 ∙ [3]9 = [0]9 .  

7 is invertible in 𝑍15: [7]15 ∙ [13]15 = [91]15 = [1]15, but is not invertible in 𝑍14: 
[7]14 ∙ [2]14 = [14]14 = [0]14.  

 


