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Algebra.  

Principle of Mathematical Induction (continued). 

Newton’s binomial. 

The Newton’s binomial is an expression representing the simplest 𝑛-th degree 
factorized polynomial of two variables, 𝑃𝑛(𝑥, 𝑦) = (𝑥 + 𝑦)𝑛 in the form of the 
polynomial summation (i.e. expanding the brackets), 

(𝑥 + 𝑦)𝑛 = (
𝑛
0

) 𝑥𝑛 + (
𝑛
1

) 𝑥𝑛−1𝑦  + (
𝑛
2

) 𝑥𝑛−2𝑦2 + ⋯ + (
𝑛
𝑘

) 𝑥𝑛−𝑘𝑦𝑘 + ⋯ +

(
𝑛

𝑛 − 1
) 𝑥  𝑦𝑛−1 + (

𝑛
𝑛

) 𝑦𝑛,         (1a) 

(𝑥 + 𝑦)𝑛 = 𝐶𝑛
0𝑥𝑛 + 𝐶𝑛

1𝑥𝑛−1𝑦  + 𝐶𝑛
2𝑥𝑛−2𝑦2 + ⋯ + 𝐶𝑛

𝑘𝑥𝑛−𝑘𝑦𝑘 + ⋯ +

𝐶𝑛
𝑛−1𝑥  𝑦𝑛−1 + 𝐶𝑛

𝑛𝑦𝑛.          (1b) 

For 𝑛 =  1, 2, 3, …, these are familiar expressions, 

(𝑥 + 𝑦) = 𝑥 + 𝑦,  

(𝑥 + 𝑦)2 = 𝑥2 + 2𝑥𝑦 + 𝑦2,  

(𝑥 + 𝑦)3 = 𝑥3 + 3𝑥2𝑦  + 3𝑥𝑦2+𝑦3, 

etc. 

The Newton’s binomial formula could be established either by directly 
expanding the brackets, or proven using the mathematical induction. 

Exercise. Prove the Newton’s binomial using the mathematical induction.  

Induction basis. For 𝑛 = 1 the statement is a true equality, (𝑥 + 𝑦)1 = 𝐶1
0𝑥 +

𝐶1
1𝑦. We can also easily prove that it holds for 𝑛 = 2. Indeed, (𝑥 + 𝑦)2 =

𝐶2
0𝑥2 + 𝐶2

1𝑥𝑦 + 𝐶2
2𝑦2. 

Induction hypothesis. Suppose the equality holds for some 𝑛 ∈ 𝑁, that is, 



(𝑥 + 𝑦)𝑛 = 𝐶𝑛
0𝑥𝑛 + 𝐶𝑛

1𝑥𝑛−1𝑦  + 𝐶𝑛
2𝑥𝑛−2𝑦2 + ⋯ + 𝐶𝑛

𝑘𝑥𝑛−𝑘𝑦𝑘 + ⋯ + 𝐶𝑛
𝑛−1𝑥  𝑦𝑛−1

+ 𝐶𝑛
𝑛𝑦𝑛 

Induction step. We have to prove that it then also holds for the next integer, 
𝑛 + 1, 

(𝑥 + 𝑦)𝑛+1 = 𝐶𝑛+1
0 𝑥𝑛+1 + 𝐶𝑛+1

1 𝑥𝑛𝑦  + 𝐶𝑛+1
2 𝑥𝑛−1𝑦2 + ⋯ + 𝐶𝑛+1

𝑘 𝑥𝑛+1−𝑘𝑦𝑘 +
⋯ + 𝐶𝑛+1

𝑛 𝑥  𝑦𝑛 + 𝐶𝑛+1
𝑛+1𝑦𝑛+1  

Proof.  (𝑥 + 𝑦)𝑛+1 = (𝑥 + 𝑦)𝑛(𝑥 + 𝑦) = 

(𝐶𝑛
0𝑥𝑛 + 𝐶𝑛

1𝑥𝑛−1𝑦  + 𝐶𝑛
2𝑥𝑛−2𝑦2 + ⋯ + 𝐶𝑛

𝑘𝑥𝑛−𝑘𝑦𝑘 + ⋯ + 𝐶𝑛
𝑛−1𝑥  𝑦𝑛−1

+ 𝐶𝑛
𝑛𝑦𝑛)(𝑥 + 𝑦) = 

𝐶𝑛
0𝑥𝑛+1 + 𝐶𝑛

1𝑥𝑛𝑦  + 𝐶𝑛
2𝑥𝑛−1𝑦2 + ⋯ + 𝐶𝑛

𝑘𝑥𝑛−𝑘+1𝑦𝑘 + ⋯ + 𝐶𝑛
𝑛−1𝑥2 

𝑦𝑛−1

+ 𝐶𝑛
𝑛𝑥𝑦𝑛 + 𝐶𝑛

0𝑥𝑛𝑦 + 𝐶𝑛
1𝑥𝑛−1𝑦2 

+ 𝐶𝑛
2𝑥𝑛−2𝑦3 + ⋯ + 𝐶𝑛

𝑘𝑥𝑛−𝑘𝑦𝑘+1

+ ⋯ + 𝐶𝑛
𝑛−1𝑥  𝑦𝑛 + 𝐶𝑛

𝑛𝑦𝑛+1 = 

𝐶𝑛
0𝑥𝑛+1 + (𝐶𝑛

1 + 𝐶𝑛
0)𝑥𝑛𝑦  + (𝐶𝑛

2 + 𝐶𝑛
1)𝑥𝑛−1𝑦2 + ⋯ + (𝐶𝑛

𝑘 + 𝐶𝑛
𝑘−1)𝑥𝑛−𝑘+1𝑦𝑘

+ ⋯ + (𝐶𝑛
𝑛 + 𝐶𝑛

𝑛−1)𝑥  𝑦𝑛 + 𝐶𝑛
𝑛𝑦𝑛+1 = 

𝐶𝑛+1
0 𝑥𝑛+1 + 𝐶𝑛+1

1 𝑥𝑛𝑦  + 𝐶𝑛+1
2 𝑥𝑛−1𝑦2 + ⋯ + 𝐶𝑛+1

𝑘 𝑥𝑛+1−𝑘𝑦𝑘 + ⋯ + 𝐶𝑛+1
𝑛 𝑥  𝑦𝑛 +

𝐶𝑛+1
𝑛+1𝑦𝑛+1, 

Where we have used the property of binomial coefficients,  𝐶𝑛
𝑘 + 𝐶𝑛

𝑘−1 = 𝐶𝑛+1
𝑘 . 

¤  

Recap: Properties of binomial coefficients 

Binomial coefficients are defined by 

𝐶𝑛
𝑘 = 𝐶𝑘 𝑛

 = (
𝑛
𝑘

) =
𝑛!

𝑘! ( 𝑛 − 𝑘)!
 

Binomial coefficients have clear and important combinatorial meaning.  

• There are (
𝑛
𝑘

) ways to choose k elements from a set of n elements.  

• There are (
𝑛 + 𝑘 − 1

𝑘
)  ways to choose k elements from a set of n if 

repetitions are allowed.  



• There are (
𝑛 + 𝑘

𝑘
) strings containing k ones and n zeros. 

• There are (
𝑛 + 1

𝑘
) strings consisting of k ones and n zeros such that no two 

ones are adjacent.  

They satisfy the following identities, 

𝐶𝑛+1
𝑘+1 = 𝐶𝑛

𝑘 + 𝐶𝑛
𝑘+1  (

𝑛 + 1
𝑘 + 1

) = (
𝑛
𝑘

) + (
𝑛

𝑘 + 1
) 

𝐶𝑛+1
𝑘 = 𝐶𝑛

𝑘 + 𝐶𝑛
𝑘−1  (

𝑛 + 1
𝑘

) = (
𝑛
𝑘

) + (
𝑛

𝑘 − 1
) 

∑ 𝐶𝑛
𝑘

𝑛

𝑘=0

= ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

= 2𝑛 

Patterns in the Pascal triangle 

   

Exercise. Find the sum of the top 𝑛 rows in the Pascal triangle,  

∑ (∑ 𝐶𝑚
𝑘𝑚

𝑘=0 )𝑛
𝑚=0 = 2𝑛+1 − 1.  

  

𝐶𝑛
𝑘 = 𝐶𝑛−1

𝑘−1 + 𝐶𝑛−1
𝑘  Fibonacci numbers (sum of the 

“shallow” diagonals: 



Review of selected homework problems. 

Problem 4. Using mathematical induction, prove that  

a. 𝑃𝑛 : ∑ 𝑘2𝑛
𝑘=1 = 12 + 22 + 32 + ⋯ + 𝑛2 =

𝑛(𝑛+1)(2𝑛+1)

6
 

Solution.  

Basis: 𝑃1 : ∑ 𝑘21
𝑘=1 = 1 =

1∙(1+1)∙(2∙1+1)

6
 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1 : ∑ 𝑘2𝑛+1

𝑘=1 = 12 + 22 + 32 + ⋯ + (𝑛 + 1)2 =
(𝑛+1)(𝑛+2)(2𝑛+3)

6
 

Proof: ∑ 𝑘2𝑛+1
𝑘=1 = ∑ 𝑘2𝑛

𝑘=1 + (𝑛 + 1)2 =
𝑛(𝑛+1)(2𝑛+1)

6
+ (𝑛 + 1)2 =

(𝑛+1)

6
(𝑛(2𝑛 + 1) + 6𝑛 + 6) =

(2𝑛+1)(2𝑛2+7𝑛+6)

3
=

(𝑛+1)(𝑛+2)(2𝑛+3)

6
, 

where we used the induction hypothesis, 𝑃𝑛, to replace the sum of the first 𝑛 
terms with a formula given by 𝑃𝑛. ¤ 

b. 𝑃𝑛 : ∑ 𝑘3𝑛
𝑘=1 = 13 + 23 + 33 + ⋯ + 𝑛3 = [

𝑛(𝑛+1)

2
]

2

 

Solution.  

Basis: 𝑃1 : ∑ 𝑘31
𝑘=1 = 1 = [

1(1+1)

2
]

2

 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1 : ∑ 𝑘3𝑛+1

𝑘=1 = 13 + 23 + 33 + ⋯ + (𝑛 + 1)3 =

[
(𝑛+1)(𝑛+2)

2
]

2

 

Proof: ∑ 𝑘3𝑛+1
𝑘=1 = ∑ 𝑘3𝑛

𝑘=1 + (𝑛 + 1)3 = [
𝑛(𝑛+1)

2
]

2

+ (𝑛 + 1)3 = [
(𝑛+1)

2
]

2
(𝑛2 +

4𝑛 + 4) = [
(𝑛+1)(𝑛+2)

2
]

2

, where we used the induction hypothesis, 𝑃𝑛, to 

replace the sum of the first 𝑛 terms with a formula given by 𝑃𝑛. ¤ 

c. 𝑃𝑛 : ∑
1

𝑘2+𝑘

𝑛
𝑘=1 =

1

1∙2
+

1

2∙3
+

1

3∙4
+ ⋯ +

1

𝑛∙(𝑛+1)
=

𝑛

𝑛+1
 



Solution.  

Basis: 𝑃1 : ∑
1

𝑘2+𝑘

1
𝑘=1 =

1

2
=

1

1+1
 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1 : ∑

1

𝑘2+𝑘

𝑛+1
𝑘=1 =

𝑛+1

𝑛+2
 

Proof: ∑
1

𝑘2+𝑘

𝑛+1
𝑘=1 = ∑

1

𝑘2+𝑘

𝑛
𝑘=0 +

1

(𝑛+1)(𝑛+2)
=

𝑛

𝑛+1
+

1

(𝑛+1)(𝑛+2)
=

𝑛2+2𝑛+1

(𝑛+1)(𝑛+2)
=

𝑛+1

𝑛+2
. ¤ 

e. 𝑃𝑛: ∀𝑛, ∃𝑘, 5𝑛 + 3 = 4𝑘 

Solution.  

Basis: 𝑃1: 𝑛 = 1, ∃𝑘, 51 + 3 = 8 = 4𝑘
 

⇔ 𝑘 = 2 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1: ∀𝑛, ∃𝑞, 5𝑛+1 + 3 = 4𝑞 

Proof: 5𝑛+1 + 3 = 5 ∙ 5𝑛 + 3 = 5 ∙ (4𝑘 − 3) + 3 = 5 ∙ 4𝑘 − 12 = 4 ∙ (5𝑘 − 3).  

Where we used the induction hypothesis, 𝑃𝑛, to replace 5𝑛 with a formula, 
5𝑛 = 4𝑘 − 3, given by 𝑃𝑛. ¤ 

e. 𝑃𝑛: ∀𝑛 ≥ 2, ∀𝑥 > −1,   (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 

Solution.  

Basis: 𝑃2: ∀𝑥 > −1, 𝑛 = 2,   (1 + 𝑥)2 = 1 + 2𝑥 + 𝑥2 ≥ 1 + 2𝑥 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1: ∀𝑛 ≥ 2, ∀𝑥 > −1,  (1 + 𝑥)𝑛+1 ≥ 1 +

(𝑛 + 1)𝑥 

Proof: (1 + 𝑥)𝑛+1 = (1 + 𝑥) (1 + 𝑥)𝑛 ≥ (1 + 𝑥)(1 + 𝑛𝑥) = 1 + (𝑛 + 1)𝑥 +
𝑥2 ≥ 1 + (𝑛 + 1)𝑥. ¤ 

 


