October 20, 2024

Algebra.

Principle of Mathematical Induction (continued).

Newton's binomial.

The Newton's binomial is an expression representing the simplest n -th degree factorized polynomial of two variables, $P_n(x, y) = (x + y)^n$ in the form of the polynomial summation (i.e. expanding the brackets),

$$
(x+y)^n = {n \choose 0} x^n + {n \choose 1} x^{n-1} y + {n \choose 2} x^{n-2} y^2 + \dots + {n \choose k} x^{n-k} y^k + \dots + {n \choose n-1} x y^{n-1} + {n \choose n} y^n,
$$
\n(1a)

$$
(x + y)^n = C_n^0 x^n + C_n^1 x^{n-1} y + C_n^2 x^{n-2} y^2 + \dots + C_n^k x^{n-k} y^k + \dots + C_n^{n-1} x y^{n-1} + C_n^n y^n.
$$
\n(1b)

For $n = 1, 2, 3, ...$, these are familiar expressions,

$$
(x + y) = x + y,
$$

\n
$$
(x + y)^2 = x^2 + 2xy + y^2,
$$

\n
$$
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3,
$$

etc.

The Newton's binomial formula could be established either by directly expanding the brackets, or proven using the mathematical induction.

Exercise. Prove the Newton's binomial using the mathematical induction.

Induction basis. For $n = 1$ the statement is a true equality, $(x + y)^1 = C_1^0 x + C_2^1 x$ C_1^1 y. We can also easily prove that it holds for $n = 2$. Indeed, $(x + y)^2 =$ $C_2^0 x^2 + C_2^1 xy + C_2^2 y^2$.

Induction hypothesis. Suppose the equality holds for some $n \in N$, that is,

$$
(x + y)^n = C_n^0 x^n + C_n^1 x^{n-1} y + C_n^2 x^{n-2} y^2 + \dots + C_n^k x^{n-k} y^k + \dots + C_n^{n-1} x y^{n-1} + C_n^n y^n
$$

Induction step. We have to prove that it then also holds for the next integer, $n + 1$,

$$
(x + y)^{n+1} = C_{n+1}^{0} x^{n+1} + C_{n+1}^{1} x^{n} y + C_{n+1}^{2} x^{n-1} y^{2} + \dots + C_{n+1}^{k} x^{n+1-k} y^{k} + \dots + C_{n+1}^{n} x^{n} y^{n} + C_{n+1}^{n+1} y^{n+1}
$$

Proof. $(x + y)^{n+1} = (x + y)^n (x + y) =$

$$
(C_n^0 x^n + C_n^1 x^{n-1} y + C_n^2 x^{n-2} y^2 + \dots + C_n^k x^{n-k} y^k + \dots + C_n^{n-1} x y^{n-1} + C_n^n y^n)(x + y) =
$$

$$
C_n^0 x^{n+1} + C_n^1 x^n y + C_n^2 x^{n-1} y^2 + \dots + C_n^k x^{n-k+1} y^k + \dots + C_n^{n-1} x^2 y^{n-1} + C_n^n x y^n + C_n^0 x^n y + C_n^1 x^{n-1} y^2 + C_n^2 x^{n-2} y^3 + \dots + C_n^k x^{n-k} y^{k+1} + \dots + C_n^{n-1} x y^n + C_n^n y^{n+1} =
$$

$$
C_n^0 x^{n+1} + (C_n^1 + C_n^0) x^n y + (C_n^2 + C_n^1) x^{n-1} y^2 + \dots + (C_n^k + C_n^{k-1}) x^{n-k+1} y^k
$$

+ $\dots + (C_n^n + C_n^{n-1}) x y^n + C_n^n y^{n+1} =$

 $C_{n+1}^0 x^{n+1} + C_{n+1}^1 x^n y + C_{n+1}^2 x^{n-1} y^2 + \dots + C_{n+1}^k x^{n+1-k} y^k + \dots + C_{n+1}^n x y^n +$ $C_{n+1}^{n+1}y^{n+1}$,

Where we have used the property of binomial coefficients, $C_n^k + C_n^{k-1} = C_{n+1}^k$. ¤

Recap: Properties of binomial coefficients

Binomial coefficients are defined by

$$
C_n^k = {}_nC_k = \binom{n}{k} = \frac{n!}{k! \left(n - k \right)!}
$$

Binomial coefficients have clear and important combinatorial meaning.

- There are (\boldsymbol{n} $\binom{n}{k}$ ways to choose *k* elements from a set of *n* elements.
- There are $\binom{n+k-1}{k}$ \boldsymbol{k}) ways to choose *k* elements from a set of n if repetitions are allowed.
- There are $\binom{n+k}{k}$ \boldsymbol{k}) strings containing k ones and n zeros.
- There are $\binom{n+1}{k}$ \boldsymbol{k}) strings consisting of k ones and n zeros such that no two ones are adjacent.

They satisfy the following identities,

$$
C_{n+1}^{k+1} = C_n^k + C_n^{k+1} \Leftrightarrow {n+1 \choose k+1} = {n \choose k} + {n \choose k+1}
$$

$$
C_{n+1}^k = C_n^k + C_n^{k-1} \Leftrightarrow {n+1 \choose k} = {n \choose k} + {n \choose k-1}
$$

$$
\sum_{k=0}^n C_n^k = \sum_{k=0}^n {n \choose k} = 2^n
$$

Patterns in the Pascal triangle

Exercise. Find the sum of the top n rows in the Pascal triangle, $\sum_{m=0}^n(\sum_{k=0}^m C_m^k)$ $_{m=0}^{n}(\sum_{k=0}^{m} C_m^k) = 2^{n+1} - 1.$

Review of selected homework problems.

Problem 4. Using mathematical induction, prove that

a.
$$
P_n: \sum_{k=1}^n k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}
$$

Solution.

Basis:
$$
P_1: \sum_{k=1}^{1} k^2 = 1 = \frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}
$$

\n**Induction:** $P_n \Rightarrow P_{n+1}$, where $P_{n+1}: \sum_{k=1}^{n+1} k^2 = 1^2 + 2^2 + 3^2 + \dots + (n+1)^2$

\n $\frac{(n+1)(n+2)(2n+3)}{6}$

\n**Proof:** $\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)}{6} (n(2n+1) + 6n + 6) = \frac{(2n+1)(2n^2 + 7n + 6)}{3} = \frac{(n+1)(n+2)(2n+3)}{6}$

 $=$

where we used the induction hypothesis, P_n , to replace the sum of the first n terms with a formula given by P_n . ∞

b.
$$
P_n: \sum_{k=1}^n k^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2
$$

Solution.

Basis:
$$
P_1
$$
: $\sum_{k=1}^1 k^3 = 1 = \left[\frac{1(1+1)}{2}\right]^2$

Induction: $P_n \Rightarrow P_{n+1}$, where P_{n+1} : $\sum_{k=1}^{n+1} k^3 = 1^3 + 2^3 + 3^3 + \dots + (n+1)^3 =$ $\int \frac{(n+1)(n+2)}{2}$ $\left[\frac{n+2j}{2}\right]$ 2

Proof: $\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil$ $\frac{1}{2}$ 2 $+(n+1)^3 = \frac{(n+1)}{2}$ $\frac{1}{2}$ 2 $(n^2 +$ $(4n+4) = \frac{(n+1)(n+2)}{2}$ $\left[\frac{n+2j}{2}\right]$ 2 , where we used the induction hypothesis, P_n , to replace the sum of the first *n* terms with a formula given by P_n . α

c.
$$
P_n: \sum_{k=1}^n \frac{1}{k^2 + k} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}
$$

Solution.

<u>Basis</u>: P_1 : $\sum_{k=1}^1 \frac{1}{k^2}$ k^2+k $\frac{1}{k-1} \frac{1}{k^2 + k} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{1+1}$ 1+1 <u>Induction</u>: $P_n \Rightarrow P_{n+1}$, where P_{n+1} : $\sum_{k=1}^{n+1} \frac{1}{k^2}$ k^2+k $\frac{n+1}{k+1} \frac{1}{k^2+k} = \frac{n+1}{n+2}$ $n+2$ Proof: $\sum_{k=1}^{n+1} \frac{1}{n^2}$ k^2+k $_{k=1}^{n+1} \frac{1}{k^2+k} = \sum_{k=0}^{n} \frac{1}{k^2+k}$ k^2+k $\frac{n}{k} = 0 \frac{1}{k^2 + k} + \frac{1}{(n+1)!}$ $\frac{1}{(n+1)(n+2)} = \frac{n}{n+1}$ $\frac{n}{n+1} + \frac{1}{(n+1)(n+1)}$ $\frac{1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)}$ $\frac{n+2n+1}{(n+1)(n+2)} =$ $n+1$ $\frac{n+1}{n+2}$ a e. $P_n: \forall n, \exists k, 5^n + 3 = 4k$

Solution.

<u>Basis</u>: P_1 : $n = 1$, ∃ k , 5¹ + 3 = 8 = 4 k ⇔ $k = 2$

Induction: $P_n \Rightarrow P_{n+1}$, where P_{n+1} : $\forall n, \exists q, 5^{n+1} + 3 = 4q$

Proof: $5^{n+1} + 3 = 5 \cdot 5^n + 3 = 5 \cdot (4k - 3) + 3 = 5 \cdot 4k - 12 = 4 \cdot (5k - 3)$.

Where we used the induction hypothesis, P_n , to replace 5^n with a formula, $5^n = 4k - 3$, given by P_n . ∞

e. $P_n: \forall n \ge 2, \forall x > -1, (1+x)^n \ge 1 + nx$

Solution.

<u>Basis</u>: P_2 : ∀x > -1, n = 2, $(1 + x)^2 = 1 + 2x + x^2 \ge 1 + 2x$

Induction: $P_n \Rightarrow P_{n+1}$, where P_{n+1} : $\forall n \geq 2, \forall x > -1$, $(1+x)^{n+1} \geq 1 +$ $(n+1)x$

Proof: $(1 + x)^{n+1} = (1 + x) (1 + x)^n \ge (1 + x)(1 + nx) = 1 + (n + 1)x +$ $x^2 \ge 1 + (n + 1)x$. α