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Algebra.  

Principle of Mathematical Induction. 

Let {𝑃(𝑛)} = 𝑃(1), 𝑃(2), 𝑃(3), … be a sequence of propositions numbered by 
positive integers, which together constitute a general theorem, 𝑃. In 
particular, 𝑃(𝑛) can be some formula, or other property of positive integers. 
Suppose that by some mathematical argument it can be shown that,  

(1) Base Case: 𝑃(1) is true, and 

(2) Inductive Step: if 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is also true: 𝑃(𝑛)
 

⇒ 𝑃(𝑛 + 1). 

Then, 𝑃(𝑛) is true for all positive integers: ∀𝑛, 𝑃(𝑛), so all the propositions of 
the sequence are true and the theorem 𝑃 is proved. 

The principle of mathematical induction rests on the fact that after any 
integer, 𝑛, there is a next one, 𝑛 + 1, and that any integer can be achieved by a 
finite number of steps incrementing the previous integer by 1, starting from 1.  

Although logically obvious, the principle of mathematical induction can be 
proven as a mathematical theorem using the “principle of smallest integer”, 
which states: every non-empty set 𝑺 of positive integers has a smallest 
number. Indeed, 𝑆 must contain at least one integer, say 𝑛, and the smallest of 
integers 1,2, … , 𝑛 belonging to 𝑆 will be the smallest integer in it.  

Consider a sequence of statements {𝑃(𝑛)} = {𝑃(1), 𝑃(2), 𝑃(3), … }, such that, 

• 𝑃(1) is true, and 
• For any positive integer if 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true: ∀𝑛 ∈

ℕ, 𝑃(𝑛)
 

⇒ 𝑃(𝑛 + 1).  

Let us assume that one of the statements in 𝑃 = {𝑃(𝑛)} is false: ∃𝑚 ∈

ℕ, ~(𝑃(𝑚)) and show that such hypothesis is untenable. Indeed, in such case 

the set of all positive integers for which 𝑃(𝑛) is false is non-empty, and 
therefore has the smallest number, 𝑟. Then, 𝑃(𝑟) is false while 𝑃(𝑟 − 1) is true, 



(∃𝑟 ∈ ℕ, (𝑃(𝑟 − 1) ∧ ~(𝑃(𝑟))))
 

⇔ ~(∀𝑟 ∈ ℕ, 𝑃(𝑟)
 

⇒ 𝑃(𝑟 + 1)). This 

contradicts our assumption, which completes the proof. ¤ 

Let us now recast the above proof using the notations of logical calculus.  

Theorem (Principle of Mathematical Induction).  

 (𝑃(1) ∧ (∀𝑛 ∈ ℕ, 𝑃(𝑛)
 

⇒ 𝑃(𝑛 + 1)))
 

⇒ (𝑃: ∀𝑛 ∈ ℕ, 𝑃(𝑛)). 

Proof. Assume the opposite. Recalling that, ~(𝑄
 

⇒ 𝑃)
 

⇔ (𝑄 ∧ ~𝑃), we write, 
the negation of the above statement as, 

(𝑃(1) ∧ (∀𝑛 ∈ ℕ, 𝑃(𝑛)
 

⇒ 𝑃(𝑛 + 1))) ∧ ~(𝑃: ∀𝑛 ∈ ℕ, 𝑃(𝑛)), or, 

(𝑃(1) ∧ (∀𝑛 ∈ ℕ, 𝑃(𝑛)
 

⇒ 𝑃(𝑛 + 1))) ∧ (∃𝑛 ∈ ℕ, ~𝑃(𝑛)). 

Now, using the “principle of smallest integer” we arrive at a contradiction, 

(∃𝑟 ∈ ℕ, (𝑃(𝑟 − 1) ∧ ~(𝑃(𝑟))))
 

⇔ ~(∀𝑟 ∈ ℕ, 𝑃(𝑟)
 

⇒ 𝑃(𝑟 + 1)). ¤  

Example 1. Prove that the sum of the 𝑛 first odd positive integers is 𝑛2, 

i.e., 1 + 3 + 5 + ⋯ + (2𝑛 − 1) = 𝑛2. 

Solution. Let  𝑆(𝑛) = 1 + 3 + 5 + ⋯ + (2𝑛 − 1). 

We want to prove by induction that for every positive integer 𝑛, 𝑆(𝑛) = 𝑛2. 

(1) Verify Base Case. For 𝑛 = 1, we have 𝑆(1) = 1 = 12, so the property holds. 

(2) Inductive Step. Assume (Induction Hypothesis) that the property is true 
for a positive integer 𝑛, i.e.: 𝑆(𝑛) = 𝑛2. We must prove that it is also true for 
𝑛 +  1, i.e., 𝑆(𝑛 + 1) = (𝑛 + 1)2, i. e., {𝑆(𝑛) = 𝑛2}

 
⇒ {𝑆(𝑛 + 1) = (𝑛 + 1)2}. In 

fact, we can verify this explicitly, 

𝑆(𝑛 + 1) = 1 + 3 + 5 + ⋯ + (2𝑛 − 1) + (2𝑛 + 1) = 𝑆(𝑛) + (2𝑛 + 1).  

But, by induction hypothesis, 𝑆(𝑛) = 𝑛2. Hence, 



𝑆(𝑛 + 1) = 𝑛2 + (2𝑛 + 1) = (𝑛 + 1)2. 

This completes the inductive step and shows that the property is true for all 
positive integers. ¤ 

Numerical sequences. Progressions. 

Numerical sequence is an ordered set of numbers, which are numbered 
consecutively by positive integers, 𝑛, {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛}. The numbers, 𝑎𝑖 , are 
called elements, or terms. The series is the value obtained by adding up all 
terms in the sequence; this value is called the “sum”.  

A Series is the sum of the terms of a sequence. Finite sequences and series 
have both first and last terms defined, whereas infinite sequences and series 
continue indefinitely.  

Arithmetic progression is the following numerical sequence, 

{𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} = {𝑎1, 𝑎1 + 𝑑, 𝑎1 + 2𝑑, 𝑎1 + 3𝑑, … 𝑎1 + (𝑛 − 1)𝑑}. (7) 

The sum of the arithmetic progression is, 

𝑆𝑛 =
𝑛

2
(2𝑎1 + (𝑛 − 1)𝑑) =

𝑛

2
(𝑎1 + 𝑎𝑛).      (8) 

Exercise. Using mathematical induction, prove that  

𝑃𝑛 : ∑ 𝑘 

𝑛

𝑘=1

= 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
 

Solution.  

Basis: 𝑃1 : ∑ 𝑘 1
𝑘=1 = 1 =

1∙(1+1)

2
 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where 𝑃𝑛+1 : ∑ 𝑘 𝑛+1

𝑘=1 = 1 + 2 + 3 + ⋯ + (𝑛 + 1) =
(𝑛+1)(𝑛+2)

2
 

Proof: ∑ 𝑘 𝑛+1
𝑘=1 = 1 + 2 + 3 + ⋯ + (𝑛 + 1) = ∑ 𝑘 𝑛

𝑘=1 + (𝑛 + 1) =
𝑛(𝑛+1)

2
+

(𝑛 + 1) =
(𝑛+1)(𝑛+2)

2
.   



Geometic progression is a sequence, 

{𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛} = {𝑎, 𝑎𝑞2, 𝑎𝑞3, … , 𝑎𝑞𝑛−1}     (9) 

The sum of the geometric progression is geometric series, 

𝐺𝑛 = 𝑎 + 𝑎𝑞 + 𝑎𝑞2 + 𝑎𝑞3 + ⋯ +  𝑎𝑞𝑛−1 = 𝑎
1−𝑞𝑛

1−𝑞
.    (10) 

This can be derived via several methods, including the mathematical 
induction.  

Excercise. Using mathematical induction, prove formula for the sum of 
geometric series: 

𝑃𝑛: ∑ 𝑞𝑘 
𝑛

𝑘=0

= 1 + 𝑞 + 𝑞2 + 𝑞3 + ⋯ + 𝑞𝑛 =
1 − 𝑞𝑛+1

1 − 𝑞
 

Solution.  

Basis: 𝑃1 : ∑ 𝑞𝑘 1
𝑘=0 = 1 + 𝑞 =

1−𝑞2

1−𝑞
 

Induction: 𝑃𝑛

 
⇒ 𝑃𝑛+1, where ∑ 𝑞𝑘 𝑛+1

𝑘=0 = 1 + 𝑞 + 𝑞2 + 𝑞3 + ⋯ + 𝑞𝑛+1 =
1−𝑞𝑛+2

1−𝑞
 

Proof: ∑ 𝑞𝑘 𝑛+1
𝑘=1 = 1 + 𝑞 + 𝑞2 + 𝑞3 + ⋯ + 𝑞𝑛 + 𝑞𝑛+1 =

1−𝑞𝑛+1

1−𝑞
+ 𝑞𝑛+1 =

1−𝑞𝑛+1+𝑞𝑛+1−𝑞𝑛+2

1−𝑞
=

1−𝑞𝑛+2

1−𝑞
.  

Examples. Using mathematical induction, prove that, 

12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =
4𝑛3−𝑛

3
, 

 22 + 42 + 62 + ⋯ + (2𝑛)2 =
2𝑛(2𝑛+1)(𝑛+1)

3
.  

  



Formal fallacies (recap). Example of base rate fallacy: Monty Hall Problem. 

A formal fallacy is an error in logic that can be seen in the argument's form. All 

formal fallacies are specific types of non sequiturs (does not follow). 

• Base rate fallacy – making a probability judgment based on conditional 

probabilities, without accounting for the effect of prior probabilities.  

Example. Consider playing the following game. There is a dollar bill in one of 

the three boxes. First, you are offered to choose one box. Then, the party you 

play with randomly chooses to open one of the remaining two boxes and you 

see that it is empty. You are then offered to swap your box and the remaining 

un-opened box. Should you switch? In other words, of the two un-opened 

boxes, the one you have and the unopened box from the other pair, which one 

has higher probability of containing the dollar? 

This is a version of the famous problem in probability theory, also known as 

Bertrand box paradox, or an extensively discussed Monty Hall Problem, which 

was popularized by Martin Gardner as the Three Prisoners Problem.   

Solution. An incorrect argument, which states that the probabilities of finding 
the dollar in the two un-opened boxes are equal because they were equal to 
begin with, before the third box was opened, is an example of base rate fallacy. 
Discarding the information on the probability of a condition “a box randomly 
chosen of the remaining two boxes is empty”, yields the incorrect conclusion.  

One simple solution is to count the possible outcomes: if the dollar is in the 
box you chose first, then there are two outcomes which satisfy the condition 
“a box randomly chosen of the remaining two boxes is empty”. If, on the other 
hand, the dollar is in one of those boxes, then there is only one such outcome. 
Hence, after you know that one of the remaining two boxes is empty, you 
know that there are twice more chances that the dollar is in the box that 
remains unopened than in the one you chose first. Alternatively, there is one 
chance out of three that the dollar is in the box you chose, and two out of three 
that it is in one of the other two boxes. Once one of those two is opened and 
found empty, these two out of three chances now are that the dollar is in the 
unopened box. The solution can be formalized using the Bayes theorem on 
conditional probability.  

https://en.wikipedia.org/wiki/Bertrand%27s_box_paradox
https://en.wikipedia.org/wiki/Monty_Hall_problem
https://en.wikipedia.org/wiki/Three_Prisoners_problem


Bayes’ theorem (alternatively Bayes’ law or Bayes' rule) describes the 

probability of an event, based on prior knowledge of conditions that might be 

related to the event, 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∧ 𝐵)

𝑃(𝐵)
=

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Here 𝐴 and 𝐵 are events whose probabilities without regard to each other are 

𝑃(𝐴) and 𝑃(𝐵) ≠ 0. 

• 𝑃(𝐴|𝐵) is a conditional probability, the probability of observing event 𝐴   

given that 𝐵 is true. 

• 𝑃(𝐵|𝐴) is the probability of observing event 𝐵 given that 𝐴 is true.  

• 𝑃(𝐴 ∧ 𝐵) is the joint probability of observing both events 𝐴 and 𝐵. 

Let 𝐴 be the event “dollar is in the box 𝐴 that you picked”.  𝑃(𝐴) =
1

3
 is the 

respective unconditional probability. The event 𝐵 is, “of the two boxes, box 𝐵, 

chosen at random is empty”. Note that here we must consider events 𝐴 and 𝐵 

as independent to obtain their probabilities without regard to each other. The 

unconditional probability of the event 𝐵 is, 𝑃(𝐵) =
1

3
+

1

2
∙

1

3
+ 0 ∙

1

3
=

1

2
. The 

joint probability, 𝑃(𝐴 ∧ 𝐵) =
1

3
∙

1

2
=

1

6
; the joint probability 𝑃(~𝐴 ∧ 𝐵) =

2

3
∙

1

2
=

1

3
. The conditional probability that an empty box 𝐵 is opened when both 𝐵 and 

𝐶 are empty, is 𝑃(𝐵|𝐴) =
1

2
, and we obtain, 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∧ 𝐵)

𝑃(𝐵)
=

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
=

1

3
  

If 𝐶 is now the event “dollar is in the remaining box 𝐶 that has not been 

opened”, then 𝑃(𝐶) =
1

3
,  𝑃(𝐵|𝐶) = 1, and  𝑃(𝐶 ∧ 𝐵) = 𝑃(~𝐴 ∧ 𝐵) =

1

3
, so 

𝑃(𝐶|𝐵) =
𝑃(𝐵|𝐶)𝑃(𝐶)

𝑃(𝐵)
=

2

3
 

  



Review of selected homework problems. 

Problem 3. Solve the following equations:  

a. 
𝑥−𝑎

𝑥−𝑏
+

𝑥−𝑏

𝑥−𝑎
= 2.5 

Solution.  

(
𝑥−𝑎

𝑥−𝑏
+

𝑥−𝑏

𝑥−𝑎
= 2.5)

 
⇔ [((𝑥 − 𝑎)2 + (𝑥 − 𝑏)2 = 2.5(𝑥 − 𝑎)(𝑥 − 𝑏)) ∧ (𝑥 ≠ 𝑎) ∧

(𝑥 ≠ 𝑏)]
 

⇔  [(2𝑥2 − 2(𝑎 + 𝑏)𝑥 + 𝑎2 + 𝑏2 = 2.5(𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏)) ∧

(𝑥 ≠ 𝑎) ∧ (𝑥 ≠ 𝑏)]
 

⇔  [(0.5𝑥2 − 0.5(𝑎 + 𝑏)𝑥 − 𝑎2 + 2.5𝑎𝑏 − 𝑏2 = 0) ∧
(𝑥 ≠ 𝑎) ∧ (𝑥 ≠ 𝑏)]

 
⇔ [(𝑥2 − (𝑎 + 𝑏)𝑥 − 2(𝑎 − 𝑏)2 + 𝑎𝑏 = 0) ∧ (𝑥 ≠ 𝑎) ∧

(𝑥 ≠ 𝑏)]
 

⇔ [(𝑥 =
𝑎+𝑏

2
± √

1

4
(𝑎 + 𝑏)2 + 2(𝑎 − 𝑏)2 − 𝑎𝑏 = 0) ∧ (𝑥 ≠ 𝑎) ∧

(𝑥 ≠ 𝑏)]
 

⇔ [(𝑥 =
𝑎+𝑏

2
± √

9𝑎2−18𝑎𝑏+9𝑏2

4
=

𝑎+𝑏

2
± 3

𝑎−𝑏

2
) ∧ (𝑥 ≠ 𝑎) ∧ (𝑥 ≠ 𝑏)]

 
⇔  [(𝑥 = 2𝑎 − 𝑏) ∨ (𝑥 = 2𝑏 − 𝑎) ∧ (𝑎 ≠ 𝑏)]   

d. 
1

𝑥2
+

1

(𝑥+2)2
=

10

9
 

Solution.  

[
1

𝑥2
+

1

(𝑥+2)2
=

10

9
]

 
⇔  [(

1

(𝑦−1)2
+

1

(𝑦+1)2
=

10

9
) ∧ (𝑦 = 𝑥 + 1)]

 
⇔  [(

(𝑦−1)2+(𝑦+1)2

(𝑦2−1)2
=

2(𝑦2+1)

(𝑦2−1)2
=

10

9
) ∧ (𝑦 = 𝑥 + 1)]

 
⇔  [(9𝑦2 + 9 = 5𝑦4 −

10𝑦2 + 5) ∧ (𝑦 = 𝑥 + 1) ∧ (𝑦2 ≠ 1)]
 

⇔ [(5𝑦4 − 19𝑦2 − 4 = 0) ∧ (𝑦 = 𝑥 +

1) ∧ (𝑦2 ≠ 1)]
 

⇔ [(𝑦2 =
19±√192+4⋅5⋅4

2⋅5
=

19±√361+80

10
= 4) ∧ (𝑦 = 𝑥 + 1) ∧

(𝑦2 ≠ 1)]
 

⇔ [(𝑦 = ±2) ∧ (𝑥 = 𝑦 − 1) ∧ (𝑦2 ≠ 1)]
 

⇔ [(𝑥 = 1) ∨ (𝑥 = 3)]  

f. 1 + √1 + 𝑥√𝑥2 − 24 = 𝑥 

Solution.  

[1 + √1 + 𝑥√𝑥2 − 24 = 𝑥]
 

⇔ [(1 + 𝑥√𝑥2 − 24 = (𝑥 − 1)2) ∧ (𝑥 − 1 ≥ 0)]
 

⇔  [(𝑥√𝑥2 − 24 = 𝑥2 − 2𝑥) ∧ (𝑥 ≥ 1)]
 

⇔  [(√𝑥2 − 24 = 𝑥 − 2) ∧ (𝑥 ≥ 1)]



 
⇔  [(𝑥2 − 24 = (𝑥 − 2)2 = 𝑥2 − 4𝑥 + 4) ∧ (𝑥 ≥ 1)]

 
⇔  [(4𝑥 = 28) ∧ (𝑥 ≥ 1)]

 
⇔  (𝑥 = 7)  

Problem 4. Simplify expressions:  

a. √𝑥 + 2√𝑥 − 1 + √𝑥 − 2√𝑥 − 1 

Solution.  

Denote 𝑦 = √𝑥 + 2√𝑥 − 1 + √𝑥 − 2√𝑥 − 1. Then,  

𝑦2 = 𝑥 + 2√𝑥 − 1 + 2√(𝑥 − 2√𝑥 − 1)(𝑥 + 2√𝑥 − 1) + 𝑥 − 2√𝑥 − 1 =

[(2𝑥 + 2√𝑥2 − 4(𝑥 − 1)) ∧ (𝑥 ≥ 1) ∧ (𝑥 ≥ 2√𝑥 − 1)] = [(2𝑥 +

2√(𝑥 − 2)2) ∧ (𝑥 ≥ 1)] = [((2𝑥 − 2(𝑥 − 2) ∧ (𝑥 ≤ 2)) ∨ (2𝑥 + 2(𝑥 − 2)) ∧

(𝑥 ≥ 2)) ∧ (𝑥 ≥ 1)] = [4 ∧ (2 ≥ 𝑥 ≥ 1) ∨ ((4𝑥 − 4) ∧ (𝑥 ≥ 2))]  

Therefore, 𝑦 = [(2 ∧ (2 ≥ 𝑥 ≥ 1)) ∨ (2√𝑥 − 1 ∧ (𝑥 ≥ 2))].  

b. 

√√
𝑥−1

𝑥+1
+√

𝑥+1

𝑥−1
−2

√(𝑥+1)3−√(𝑥−1)3
(2𝑥 + √𝑥2 − 1) 

Solution.  𝑦 =

√√
𝑥−1

𝑥+1
+√

𝑥+1

𝑥−1
−2

√(𝑥+1)3−√(𝑥−1)3
(2𝑥 + √𝑥2 − 1) =

√
𝑥+1−2√𝑥−1√𝑥+1+𝑥−1

√𝑥−1√𝑥+1

√(𝑥+1)3−√(𝑥−1)3
(2𝑥 +

√𝑥2 − 1) =
√(√𝑥+1−√𝑥−1)

2

√√𝑥2−1(√𝑥+1−√𝑥−1)((√𝑥−1)
2

+√𝑥−1√𝑥+1+(√𝑥+1)
2

)
(2𝑥 + √𝑥2 − 1) =

√𝑥+1−√𝑥−1

√√𝑥2−1(√𝑥+1−√𝑥−1)
= (

1

√𝑥2−1
4 ) ∧ (𝑥 > 1) 


