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Algebra.  

Elements of Mathematical Logic (continued). Predicate Calculus. Quantifiers.  

Definition. A predicate with a variable is a proposition, if either (i), or (ii): 

i. a value is assigned to the variable 
ii. possible values of the variable are quantified using a quantifier 

Example. For 𝑥 >  1 to be a proposition, either we must substitute a specific 
number for 𝑥, or change it to something like "There is a number 𝑥 for which 
𝑥 >  1 holds"; equivalently, using a quantifier, ∃ 𝑥, 𝑥 >  1. 

Quantifiers.  

∃ is called the existential quantifier, and reads “ … there exists …”.  

∃ 𝑥 ∈ 𝑋: 
 

⇔ “ … there exists an 𝑥 in the set 𝑋 such that …” 

For example, "someone lives on a remote island" could be transformed into 
the propositional form, ∃ 𝑥: 𝑃(𝑥), where:  

• 𝑃(𝑥) is the predicate, stating: x hibernates during the winter time,  
• Set of objects of interest 𝑋 includes (not limited to) all living creatures.  

The statement 𝐷(𝑥): “equation 𝑥3 + 3𝑥2 + 5𝑥 + 15 = 0 has a real solution”, 
can be written in a predicate form as: 𝑥 ∈ 𝑅: 𝑥3 + 3𝑥2 + 5𝑥 + 15 = 0.   

Exercise. Try to construct negation for 𝑃(𝑥) and 𝐷(𝑥).  

∀ is called the universal quantifier, and reads “ … for all …”. 

∀𝑥 ∈ 𝑋: 
 

⇔ “ … for all 𝑥 in the set 𝑋 …” 

Example 1. "All airplanes have wings" could be transformed into the 
propositional form, ∀{𝑥, (𝑥 𝑖𝑠 𝑎𝑛 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒)}: 𝐷(𝑥), where,  

• 𝐷(𝑥) is the predicate stating: x has wings, and  
• Set of objects of interest, 𝑋, is only populated by airplanes.  



Example 2. ∀𝑥, 𝑥 < 𝑥2. Is this true or false? How we fix it if we should? 

These two quantifiers (plus the usual logical operations such as conjunction 
and disjunction, i.e. AND, OR,...) are sufficient to write all statements in 
mathematics. This gives rise to a standard mathematical language, which 
greatly facilitates expressing mathematical reasoning in proofs and problem 
solving, which we will be using throughout this course.  

Negation with Quantifiers. Predicate Negation Laws.  

Predicate Negation Laws. [Generalized De Morgan] 

~(∃𝑥 ∈ 𝑋: 𝑝𝑖) ≡ ∀𝑥 ∈ 𝑋: ~𝑝𝑖   

~(∀𝑥 ∈ 𝑋: 𝑝𝑖) ≡ ∃𝑥 ∈ 𝑋: ~𝑝𝑖   

Negation of statements with quantifiers and implications. 

1.  (∃𝑥 ∈ 𝑋: 𝑃(𝑥)) ≡ there exists 𝑥 in 𝑋 such that 𝑃(𝑥) is satisfied. The 
negation of it would be,  

~(∃𝑥 ∈ 𝑋: 𝑃(𝑥)) ≡ (It is not the case that there exists 𝑥 in 𝑋 such that 𝑃(𝑥) is 
satisfied) ≡ (for any 𝑥 in 𝑋 opposite of 𝑃(𝑥) is satisfied) ≡ (∀𝑥 ∈ 𝑋: ~𝑃(𝑥)). 

2. (∀𝑥 ∈ 𝑋: 𝑃(𝑥))≡ (for any 𝑥 ∈ 𝑋 𝑃(𝑥) is satisfied). Negation of it would be,  

~(∀𝑥 ∈ 𝑋: 𝑃(𝑥)) ≡ (It is not the case that for any 𝑥 in 𝑋 𝑃(𝑥) is satisfied) ≡  
(there exists 𝑥 in 𝑋 such that 𝑃(𝑥) is not satisfied) ≡ (∃𝑥 ∈ 𝑋: ~𝑃(𝑥)). 

Example 1. The negation of a proposition (there are positive integers 𝑛 such 

that 22𝑛
+ 1 is not a prime) would be a proposition, (for every positive integer 

𝑛, 22𝑛
+ 1 is a prime), 

~(∃𝑛 ∈ N:  22𝑛
+ 1 is not a prime) ≡ (∀𝑛 ∈ 𝑁: 22𝑛

+ 1 is a prime).  

Example 2. The negation of a proposition (Every prime is odd) would be a 
proposition that not every prime is odd, or, that there exists at least one prime 
that is even, 

~(∀𝑛, (𝑛 is prime): (𝑛 is odd)) ≡ (∃𝑛, (𝑛 is prime): (𝑛 is even)).  



In fact, even a stronger proposition holds, (∃! 𝑛, (𝑛 is prime): (𝑛 is even)).  

Negation with Multiple Quantifiers.  

3. ((∀𝑥 ∈ 𝑋), (∃𝑦 ∈ 𝑌): 𝑃(𝑥, 𝑦)) ≡ (for all 𝑥 in 𝑋 there exists 𝑦 in 𝑌 such that 
𝑃(𝑥, 𝑦) is satisfied). The negation of it would be,  

~((∀𝑥 ∈ 𝑋), (∃𝑦 ∈ 𝑌): 𝑃(𝑥, 𝑦))  ≡  ((∃𝑥 ∈ 𝑋), (∀𝑦 ∈ 𝑌): ~𝑃(𝑥, 𝑦)) 

Negation of Implications and Equivalencies.  

1. ~(𝐴
 

⇒ 𝐵)
 

⇔ (𝐴 ∧ ~(𝐵)) 

The negation of (𝐴 implies 𝐵) ≡ (𝐵 follows from 𝐴) would be a proposition 
that a conjunction of 𝐴 and ~(𝐵) holds, (both 𝐴 and an opposite of 𝐵 hold). 

2. ~(𝐴
 

⇔ 𝐵)
 

⇔ (~(𝐴)
 

⇔ 𝐵) 

3. ~(𝐴
 

⇔ 𝐵)
 

⇔ (𝐴
 

⇔ ~(𝐵)) 

The negation of (𝐴 and 𝐵 are equivalent) would be (𝐴 and opposite of 𝐵 are 
equivalent), or, (opposite of 𝐵 and 𝐴 are equivalent).  

Example. The inverse Pythagorean theorem. (∀ triangle 𝐴𝐵𝐶 with sides 𝑎, 𝑏, 
and 𝑐, 𝑎2 + 𝑏2 = 𝑐2) 

 
⇒(𝐴𝐵𝐶 is a right triangle with hypothenuse 𝑐 and legs 

𝑎, 𝑏).  

Proof . Proof by contradiction (reductio ad absurdum) proceeds by assuming 
that the opposite to the statement of the theorem is true, 

 

~((∀ triangle 𝐴𝐵𝐶 with sides 𝑎, 𝑏, and 𝑐, 𝑎2 + 𝑏2 = 𝑐2)
 

⇒(𝐴𝐵𝐶 is a right 
triangle with hypothenuse 𝑐 and legs 𝑎, 𝑏)), or,  

A

B

C

D

AC

DB

aa a a

bb

c
c c

c



(∃ triangle 𝐴𝐵𝐶 with sides 𝑎, 𝑏, and 𝑐, 𝑎2 + 𝑏2 = 𝑐2)⋀(𝐴𝐵𝐶 is not a right 
triangle)  

One way to obtain the contradiction is illustrated by the auxiliary additional 
construction shown below (consider the angles 𝐶𝐷�̂� = 𝐶𝐵�̂�  >  𝐴𝐷�̂� = 𝐴𝐵�̂�). 
There are also other ways.  

Exercise. What other proofs can you suggest? 

Recap. A summary of logical equivalences.  

Commutative laws: 

1. (𝐴 ∧ 𝐵)
 

⇔ (𝐵 ∧ 𝐴) 
2. (𝐴 ∨ 𝐵)

 
⇔ (𝐵 ∨ 𝐴) 

3. (𝐴
 

⇔ 𝐵)
 

⇔ (𝐵
 

⇔ 𝐴)  

Associative laws: 

1. (𝐴 ∧ (𝐵 ∧ 𝐶))
 

⇔ ((𝐴 ∧ 𝐵) ∧ 𝐶) 

2. (𝐴 ∨ (𝐵 ∨ 𝐶))
 

⇔ ((𝐴 ∨ 𝐵) ∨ 𝐶) 

3. (𝐴
 

⇔ (𝐵
 

⇔ 𝐶))
 

⇔ ((𝐴
 

⇔ 𝐵)
 

⇔ 𝐶) 

Distributive laws: 

4. (𝐴 ∧ (𝐵 ∨ 𝐶))
 

⇔ ((𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)) 

5. (𝐴 ∨ (𝐵 ∧ 𝐶))
 

⇔ ((𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)) 

6. (𝐴
 

⇒ (𝐵 ∧ 𝐶))
 

⇔ ((𝐴
 

⇒ 𝐵) ∧ (𝐴
 

⇒ 𝐶)) 

7. (𝐴
 

⇒ (𝐵 ∨ 𝐶))
 

⇔ ((𝐴
 

⇒ 𝐵) ∨ (𝐴
 

⇒ 𝐶)) 

8. ((𝐴 ∧ 𝐵)
 

⇒ 𝐶)
 

⇔ ((𝐴
 

⇒ 𝐶) ∨ (𝐵
 

⇒ 𝐶)) 

9. ((𝐴 ∨ 𝐵)
 

⇒ 𝐶)
 

⇔ ((𝐴
 

⇒ 𝐶) ∧ (𝐵
 

⇒ 𝐶)) 

Negation laws: 

4. ~(𝐴 ∧ 𝐵)
 

⇔ (~(𝐴) ∨ ~(𝐵)) 

5. ~(𝐴 ∨ 𝐵)
 

⇔ (~(𝐴) ∧ ~(𝐵)) 

6. ~(~𝐴)
 

⇔ 𝐴 

7. ~(𝐴
 

⇒ 𝐵)
 

⇔ (𝐴 ∧ ~(𝐵)) 



8. ~(𝐴
 

⇔ 𝐵)
 

⇔ (~(𝐴)
 

⇔ 𝐵) 

9. ~(𝐴
 

⇔ 𝐵)
 

⇔ (𝐴
 

⇔ ~(𝐵)) 

Implication laws: 

1. (𝐴
 

⇒ 𝐵)
 

⇔ (~(𝐴 ∧ ~(𝐵))) 

2. (𝐴
 

⇒ 𝐵)
 

⇔ (~(𝐴) ∨ 𝐵) 

3. (𝐴
 

⇒ 𝐵)
 

⇔ (~(𝐵)
 

⇒ ~(𝐴)) 

4. (𝐴
 

⇔ 𝐵)
 

⇔ ((𝐴
 

⇒ 𝐵) ∧ (𝐵
 

⇒ 𝐴)) 

5. (𝐴
 

⇔ 𝐵)
 

⇔ (~(𝐴)
 

⇔ ~(𝐵)) 

  



Recap. Properties of rational numbers  (ℚ) and algebraic operations.  

Ordering and comparison. 

1. ∀ 𝑎, 𝑏 ∈ ℚ, one and only one of the following relations holds 

• 𝑎 = 𝑏 

• 𝑎 < 𝑏 

• 𝑎 > 𝑏 

2. ∀ 𝑎, 𝑏 ∈ ℚ, ∃𝑐 ∈ ℚ, (𝑐 > 𝑎) ∧ (𝑐 < 𝑏), i.e. 𝑎 < 𝑐 < 𝑏 

3. Transitivity. ∀ 𝑎, 𝑏, 𝑐 ∈ ℚ, {(𝑎 < 𝑏) ∧ (𝑏 < 𝑐)}
 

⇒ (𝑎 < 𝑐)  

4. Archimedean property. ∀ 𝑎, 𝑏 ∈ ℚ, 𝑎 > 𝑏 > 0, ∃𝑛 ∈ ℕ, such that 𝑎 < 𝑛𝑏 

Addition and subtraction.  

• ∀ 𝑎, 𝑏 ∈ ℚ, 𝑎 + 𝑏 = 𝑏 + 𝑎 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℚ, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

• ∀ 𝑎 ∈ ℚ, ∃0 ∈ ℚ, 𝑎 + 0 = 𝑎 

• ∀ 𝑎 ∈ ℚ, ∃ − 𝑎 ∈ ℚ, 𝑎 + (−𝑎) = 0 

• ∀ 𝑎, 𝑏 ∈ ℚ, 𝑎 − 𝑏 = 𝑎 + (−𝑏) 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℚ, (𝑎 < 𝑏)
 

⇒ (𝑎 + 𝑐 < 𝑏 + 𝑐) 

Multiplication and division.  

• ∀ 𝑎, 𝑏 ∈ ℚ, 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℚ, (𝑎 ∙ 𝑏) ∙ 𝑐 = 𝑎 ∙ (𝑏 ∙ 𝑐) 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℚ, (𝑎 + 𝑏) ∙ 𝑐 = 𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑐 

• ∀ 𝑎 ∈ ℚ, ∃1 ∈ ℚ , 𝑎 ∙ 1 = 𝑎 

• ∀ 𝑎 ∈ ℚ, 𝑎 ≠ 0, ∃
1

𝑎
∈ ℚ, 𝑎 ∙

1

𝑎
= 1 

• ∀ 𝑎, 𝑏 ∈ ℚ, 𝑏 ≠ 0, 
𝑎

𝑏
= 𝑎 ∙

1

𝑏
 

• ∀ 𝑎, 𝑏, 𝑐 ∈ ℚ, c>0, (𝑎 < 𝑏)
 

⇒ (𝑎 ∙ 𝑐 < 𝑏 ∙ 𝑐) 

• ∀ 𝑎 ∈ ℚ, 𝑎 ∙ 0 = 0, 𝑎 ∙ (−1) = −𝑎 


