MATH 8B: HANDOUT 21 [MARCH 23, 2025] NUMBER THEORY 2: EUCLID'S ALGORITHM

NOTATION

 \mathbb{Z} — all integers \mathbb{N} — positive integers: $\mathbb{N} = \{1, 2, 3...\}$. d|a means that d is a divisor of a, i.e., a = dk for some integer k. gcd(a, b): greatest common divisor of a, b.

1. INFINITUDE OF PRIMES

One of last week's homework problems was the following theorem.

Theorem 1. (Euclid) There are infinitely many prime numbers.

Proof. Proof by contradiction: Assume there are only a finite number n of primes, $p_1 < p_2 < \cdots < p_n$. Consider the number that is the product of these, plus one: $N = p_1 \cdots p_n + 1$. By construction, N is not divisible by any of the p_i (it has a remainder 1 upon division by any of p_i). Hence it is either prime itself, or divisible by another prime that is greater than p_n , contradicting the assumption.

EUCLID'S ALGORITHM

In the last assignment, we also proved the following:

Theorem 2. If a = bq + r, then the common divisors of pair (a, b) are the same as common divisors of pair (b, r). In particular,

$$gcd(a, b) = gcd(b, r)$$

This gives a very efficient way of computing the greatest common divisor of (a, b), called Euclid's algorithm:

- **1.** If needed, switch the two numbers so that a > b
- **2.** Compute the remainder r upon division of a by b. Replace pair (a, b) with the pair (b, r)
- **3.** Repeat the previous step until you get a pair of the form (d, 0). Then gcd(a, b) = gcd(d, 0) = d.

For example:

$$gcd(42, 100) = gcd(42, 16)$$
 (because $100 = 2 \cdot 42 + 16$)
= $gcd(16, 10) = gcd(10, 6) = gcd(6, 4)$
= $gcd(4, 2) = gcd(2, 0) = 2$

As a corollary of this algorithm, we also get the following two important results.

Theorem 3. Let d = gcd(a, b). Then m is a common divisor of a, b if and only if m is a divisor of d.

In other words, common divisors of a, b are the same as divisors of d = gcd(a, b), so knowing the GCD gives us **all** common divisors of a, b.

Proof. If m|d then since d|a, we have m|a as well (HW 3 from last time). Similarly, m|b. So any divisor of d is a common divisor of a and b. Conversely, suppose that m|a and m|b. Then running Euclid's algorithm, let a = bq + r. Then m|a - bq = r. So we have m|b and m|r. We have replaced the pair (a, b) by (b, r) which we can call (a_1, b_1) . In the next step we will get $(a_2, b_2) = (r, r')$ by dividing b by r and taking the remainder r', and so on. Once again m will divide a_2 and b_2 by the same argument. Continuing, we end with the pair (d, 0), and it follows that m|d (and m|0).

Theorem 4. Let d = gcd(a, b). Then it is possible to write d in the following form

$$d = xa + yb$$

for some $x, y \in \mathbb{Z}$.

(Expressions of this form are called linear combinations of a, b.)

Proof. Euclid's algorithm produces for us a sequence of pairs of numbers:

$$(a,b) \rightarrow (a_1,b_1) \rightarrow (a_2,b_2) \rightarrow \dots$$

and the last pair in this sequence is (d, 0), where d = gcd(a, b).

We claim that we can write (a_1, b_1) as linear combination of a, b. Indeed, by definition

$$a_1 = b = 0 \cdot a + 1 \cdot b$$

$$b_1 = r = a - qb = 1 \cdot a - qb$$

where a = qb + r.

By the same reasoning, one can write a_2, b_2 as linear combination of a_1, b_1 . Combining these two statements, we get that one can write a_2, b_2 as linear combinations of a, b. We can now continue in the same way until we reach (d, 0).

Here is an example. We have shown above that gcd(100, 42) = 2 using Euclid's algorithm. We can now use that computation to write 2 as a linear combination of 100 and 42:

$$16 = 100 - 2 \cdot 42$$

$$10 = 42 - 2 \cdot 16 = 42 - 2(100 - 2 \cdot 42) = -2 \cdot 100 + 5 \cdot 42$$

$$6 = 16 - 10 = (100 - 2 \cdot 42) - (-2 \cdot 100 + 5 \cdot 42) = 3 \cdot 100 - 7 \cdot 42$$

$$4 = 10 - 6 = (-2 \cdot 100 + 5 \cdot 42) - (3 \cdot 100 - 7 \cdot 42) = -5 \cdot 100 + 12 \cdot 42$$

$$2 = 6 - 4 = (3 \cdot 100 - 7 \cdot 42) - (-5 \cdot 100 + 12 \cdot 42) = 8 \cdot 100 - 19 \cdot 42$$

PROBLEMS

When doing this homework, be careful that you only used the material we had proved or discussed so far — in particular, please do not use the prime factorization. And I ask that you only use integer numbers — no fractions or real numbers.

1. Use Euclid's algorithm to compute gcd(54, 36); gcd(97, 83); gcd(1003, 991)

- **2.** Use Euclid's algorithm to find **all** common divisors of 2634 and 522.
- **3.** Prove that gcd(n, a(n+1)) = gcd(n, a)
- 4. (a) Is it true that for all a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, prove; if not, give a counterexample.

- (b) Is it true that for some a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, give an example; if not, prove why it is impossible.
- 5. (a) Compute gcd(14, 8) using Euclid's algorithm
 - (b) Write gcd(14, 8) in the form 8k+14l. (You can try to guess and check, or proceed systematically as in the example above for (100, 42).)
 - (c) Does the equation 8x + 14y = 18 have integer solutions? Can you find at least one solution?
 - (d) Does the equation 8x + 14y = 17 have integer solutions? Can you find at least one solution?
 - (e) Can you give a complete answer: for which integer values of c does the equation 8x + 14y = c have integer solutions?
- 6. If I only have 15-cent coins and 12-cent coins, can I pay \$1.29? \$1.37?
- **7.** You have two cups, one 240 ml, the other 140 ml. What amounts of water can be measured using these two cups? [You can assume that you also have a large bucket of unknown volume.]
- 8. (a) Show that if 17c is divisible by 6, then c is divisible by 6. Note: you can not use prime factorization - we have not yet proved that it is unique! Instead, you can argue as follows: since gcd(17,6) = 1, we can write 1 = 17x + 6y. Thus, c = (17x + 6y)c. Now argue why the right-hand side is divisible by 6.
 - *(b) More generally, prove that if $a, b, c \in \mathbb{Z}$ are such that a|bc and gcd(a, b) = 1, then one must have a|c.
- 9. (a) Show that if a is odd, then gcd(a, 2b) = gcd(a, b).
 Hint: you can use the result of problem 8(b) even if you haven't solved it.
 - *(b) Show that for $m, n \in \mathbb{N}$, $gcd(2^n 1, 2^m 1) = 2^{gcd(m,n)} 1$