
MATH 8B: HANDOUT 21 [MARCH 23, 2025]
NUMBER THEORY 2: EUCLID’S ALGORITHM

NOTATION

Z — all integers
N — positive integers: N = {1, 2, 3 . . . }.
d|a means that d is a divisor of a, i.e., a = dk for some integer k.
gcd(a, b): greatest common divisor of a, b.

1. INFINITUDE OF PRIMES

One of last week’s homework problems was the following theorem.

Theorem 1. (Euclid) There are infinitely many prime numbers.

Proof. Proof by contradiction: Assume there are only a finite number n of primes, p1 < p2 <
· · · < pn. Consider the number that is the product of these, plus one: N = p1 · · · · · pn + 1.
By construction, N is not divisible by any of the pi (it has a remainder 1 upon division by
any of pi). Hence it is either prime itself, or divisible by another prime that is greater than
pn, contradicting the assumption. □

EUCLID’S ALGORITHM

In the last assignment, we also proved the following:

Theorem 2. If a = bq + r, then the common divisors of pair (a, b) are the same as common
divisors of pair (b, r). In particular,

gcd(a, b) = gcd(b, r)

This gives a very efficient way of computing the greatest common divisor of (a, b), called
Euclid’s algorithm:

1. If needed, switch the two numbers so that a > b
2. Compute the remainder r upon division of a by b. Replace pair (a, b) with the pair

(b, r)
3. Repeat the previous step until you get a pair of the form (d, 0). Then gcd(a, b) =

gcd(d, 0) = d.
For example:

gcd(42, 100) = gcd(42, 16) (because 100 = 2 · 42 + 16)

= gcd(16, 10) = gcd(10, 6) = gcd(6, 4)

= gcd(4, 2) = gcd(2, 0) = 2

As a corollary of this algorithm, we also get the following two important results.

Theorem 3. Let d = gcd(a, b). Then m is a common divisor of a, b if and only if m is a divisor
of d.

In other words, common divisors of a, b are the same as divisors of d = gcd(a, b), so
knowing the GCD gives us all common divisors of a, b.



Proof. If m|d then since d|a, we have m|a as well (HW 3 from last time). Similarly, m|b.
So any divisor of d is a common divisor of a and b. Conversely, suppose that m|a and m|b.
Then running Euclid’s algorithm, let a = bq + r. Then m|a − bq = r. So we have m|b and
m|r. We have replaced the pair (a, b) by (b, r) which we can call (a1, b1). In the next step
we will get (a2, b2) = (r, r′) by dividing b by r and taking the remainder r′, and so on. Once
again m will divide a2 and b2 by the same argument. Continuing, we end with the pair
(d, 0), and it follows that m|d (and m|0). □

Theorem 4. Let d = gcd(a, b). Then it is possible to write d in the following form

d = xa+ yb

for some x, y ∈ Z.
(Expressions of this form are called linear combinations of a, b. )

Proof. Euclid’s algorithm produces for us a sequence of pairs of numbers:

(a, b) → (a1, b1) → (a2, b2) → . . .

and the last pair in this sequence is (d, 0), where d = gcd(a, b).
We claim that we can write (a1, b1) as linear combination of a, b. Indeed, by definition

a1 = b = 0 · a+ 1 · b
b1 = r = a− qb = 1 · a− qb

where a = qb+ r.
By the same reasoning, one can write a2, b2 as linear combination of a1, b1. Combining

these two statements, we get that one can write a2, b2 as linear combinations of a, b. We
can now continue in the same way until we reach (d, 0). □

Here is an example. We have shown above that gcd(100, 42) = 2 using Euclid’s algorithm.
We can now use that computation to write 2 as a linear combination of 100 and 42:

16 = 100− 2 · 42
10 = 42− 2 · 16 = 42− 2(100− 2 · 42) = −2 · 100 + 5 · 42
6 = 16− 10 = (100− 2 · 42)− (−2 · 100 + 5 · 42) = 3 · 100− 7 · 42
4 = 10− 6 = (−2 · 100 + 5 · 42)− (3 · 100− 7 · 42) = −5 · 100 + 12 · 42
2 = 6− 4 = (3 · 100− 7 · 42)− (−5 · 100 + 12 · 42) = 8 · 100− 19 · 42

PROBLEMS

When doing this homework, be careful that you only used the material we had proved
or discussed so far — in particular, please do not use the prime factorization. And I ask
that you only use integer numbers — no fractions or real numbers.

1. Use Euclid’s algorithm to compute gcd(54, 36); gcd(97, 83); gcd(1003, 991)

2. Use Euclid’s algorithm to find all common divisors of 2634 and 522.

3. Prove that gcd(n, a(n+ 1)) = gcd(n, a)

4. (a) Is it true that for all a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, prove; if not,
give a counterexample.



(b) Is it true that for some a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, give an
example; if not, prove why it is impossible.

5. (a) Compute gcd(14, 8) using Euclid’s algorithm
(b) Write gcd(14, 8) in the form 8k+14l. (You can try to guess and check, or proceed

systematically as in the example above for (100, 42).)
(c) Does the equation 8x + 14y = 18 have integer solutions? Can you find at least

one solution?
(d) Does the equation 8x + 14y = 17 have integer solutions? Can you find at least

one solution?
(e) Can you give a complete answer: for which integer values of c does the equa-

tion 8x+ 14y = c have integer solutions?

6. If I only have 15-cent coins and 12-cent coins, can I pay $1.29? $1.37?

7. You have two cups, one 240 ml, the other 140 ml. What amounts of water can be
measured using these two cups? [You can assume that you also have a large bucket
of unknown volume.]

8. (a) Show that if 17c is divisible by 6, then c is divisible by 6.
Note: you can not use prime factorization - we have not yet proved that it is
unique! Instead, you can argue as follows: since gcd(17, 6) = 1, we can write
1 = 17x + 6y. Thus, c = (17x + 6y)c. Now argue why the right-hand side is
divisible by 6.

*(b) More generally, prove that if a, b, c ∈ Z are such that a|bc and gcd(a, b) = 1,
then one must have a|c.

9. (a) Show that if a is odd, then gcd(a, 2b) = gcd(a, b).
Hint: you can use the result of problem 8(b) even if you haven’t solved it.

*(b) Show that for m,n ∈ N, gcd(2n − 1, 2m − 1) = 2gcd(m,n) − 1


