Handout 24. Number theory 2: Euclid algorithm.

Notation recap

Natural numbers:

$$\mathbb{N} = \{1, 2, 3, ...\}$$

Integer numbers:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \mathbb{N} \cup \{0\} \cup \{-n | n \in \mathbb{N}\}$$

d is a divisor of *m*, *m* is a multiple of *d*, $(\exists k \in \mathbb{Z}, m = d \cdot k)$:

d|m

Division representation for natural numbers:

$$\forall n, d \in \mathbb{N}, \exists q, r \in \mathbb{N}, (0 \le r < d), n = q \cdot d + r$$

Division representation for integer numbers:

$$\forall n \in \mathbb{Z}, d \in \mathbb{N}, \exists q \in \mathbb{Z}, r \in \mathbb{N}, (0 \le r < d), n = q \cdot d + r$$

Euclid's algorithm

Theorem 6. If a = bq + r, then the common divisors of pair (a, b) are the same as common divisors of pair (b, r). In particular,

$$gcd(a,b) = gcd(b,r)$$

This theorem provides a very efficient way of computing the gcd(a, b), called Euclid's algorithm.

Corollary (Euclid's algorithm). To compute the *gcd*(*a*, *b*):

- 1. If needed, switch the two numbers so that a > b
- 2. Compute the remainder *r* upon division of *a* by b: a = bq + r. gcd(a, b) = gcd(b, r), so we can replace pair (a, b) with the pair (b, r).
- 3. Repeat the previous step until you get a pair of the form (d, 0). Then,

$$gcd(a,b) = gcd(b,r) = \dots = gcd(d,0) = d$$

Example.

$$gcd(42,100) = gcd(42,16)$$
 (because $100 = 2 \cdot 42 + 16$)

$$= gcd(16,10) = gcd(10,6) = gcd(6; 4) = gcd(4,2) = gcd(2,0) = 2$$

As a corollary of this algorithm, we also get the following two important results.

Math 8

Theorem 6. Let d = gcd(a, b). Then *m* is a common divisor of (a, b) if and only if *m* is a divisor of *d*.

Proof. Left as a homework exercise. \Box

In other words, common divisors of (a, b) are the same as divisors of d = gcd(a, b), so knowing the GCD gives us all common divisors of (a, b).

Theorem 7. Let d = gcd(a, b). Then, $\exists x, y \in \mathbb{Z}$ such that it is possible to write *d* in the form

$$d = xa + yb$$

Expressions of this form are called linear combinations of *a*, *b*.

Proof. Euclid's algorithm produces for us a sequence of pairs of numbers:

$$(a,b) \rightarrow (a_1,b_1) \rightarrow (a_2,b_2) \rightarrow \cdots \rightarrow (d,0)$$

and the last pair in this sequence is (d, 0), where d = gcd(a, b).

We observe that (a_1, b_1) can be written as a linear combination of a, b. Indeed, because a = qb + r,

$$a_1 = b = 0a + 1b$$
$$b_1 = r = a - qb = 1a + (-q)b$$

By the same reasoning, one can write a_2 , b_2 as a linear combination of a_1 , b_1 ($a_1 = b = q_1b_1 + b_2$, so

$$a_2 = b_1 = 0a_1 + 1b_1$$

 $b_2 = 1a_1 + (-q_1)b_1$

Combining these two statements, we get that one can write a_2 , b_2 as linear combinations of a, b. We can now continue in the same way until we reach (d, 0). \Box

Example. Using Euclid's algorithm, we have shown above that gcd(42,100) = 2. We can now use that computation to write 2 as a linear combination of 100 and 42:

$$16 = 100 - 2 \cdot 42$$

$$10 = 42 - 2 \cdot 16 = 42 - 2 \cdot (100 - 2 \cdot 42) = -2 \cdot 100 + 5 \cdot 42$$

$$6 = 16 - 10 = (100 - 2 \cdot 42) - (-2 \cdot 100 + 5 \cdot 42) = 3 \cdot 100 - 7 \cdot 42$$

$$4 = 10 - 6 = (-2 \cdot 100 + 5 \cdot 42) - (3 \cdot 100 - 7 \cdot 42) = -5 \cdot 100 + 12 \cdot 42$$

$$2 = 6 - 4 = (3 \cdot 100 - 7 \cdot 42) - (-5 \cdot 100 + 12 \cdot 42) = 8 \cdot 100 - 19 \cdot 42$$

Homework problems

When doing this homework, be careful to only use the material we had proved or discussed so far — in particular, please do not use the prime factorization. And you should only use integer numbers —no fractions or real numbers.

- 1. Use Euclid's algorithm to compute
 - a. *gcd*(54,36)
 - b. gcd(97,83)
 - c. *gcd*(1003,991)
- 2. Use Euclid's algorithm to find <u>all</u> common divisors of 2634 and 522.
- 3. Prove that gcd(n, a(n + 1)) = gcd(n, a).
- 4. Is it true that
 - a. $\forall a, b, gcd(2a, b) = 2gcd(a, b)$? If yes, prove; if not, give a counterexample.
 - b. $\exists a, b, gcd(2a, b) = 2gcd(a, b)$? If yes, give an example; if not, prove why it is impossible.

5.

- a. Using Euclid's algorithm, compute gcd(14,8)
- b. Write gcd(14,8) in the form 8k + 14l. (You can use guess and check, or proceed in the same way as in the previous problem, using Theorem 7)
- c. Does the equation 8x + 14y = 18 have integer solutions? Can you find at least one solution?
- d. Does the equation 8x + 14y = 17 have integer solutions? Can you find at least one solution?
- e. Find <u>all</u> integer values of *c* for which the equation 8x + 14y = c has integer solutions
- 6. If I only have 15-cent coins and 12-cent coins, can I pay \$1.35? \$1.37?
- 7. You have two cups, one 240 ml, the other 140 ml. What amounts of water can be measured using these two cups? [You can assume that you also have a large bucket of unknown volume.]
- 8. Prove that
 - a. if 17*c* is divisible by 6, then *c* is divisible by 6. (Note: you cannot use prime factorization we have not yet proved that it is unique! Instead, you can argue as follows: since gcd(17,6) = 1, we can write 1 = 17x + 6y. Thus, c = (17x + 6y)c. Now argue why the right-hand side is divisible by 6).
 - b. *More generally, if $a, b, c \in \mathbb{Z}$ are such that a | bc and gcd(a, b) = 1, then a | c.
- 9. Show that
 - a. if *a* is odd, then gcd(a, 2b) = gcd(a, b). Hint: you can use "theorem" in 8(b) even if you haven't solved it.
 - b. * for $m, n \in \mathbb{N}$, $gcd(2^n 1, 2^m 1) = 2^{gcd(m,n)} 1$