
February 9, 2025         Math 8 

Handout 20. Euclidean Geometry 9: Thales’s theorem. Similar triangles.   

Thales’s theorem.  

Theorem 40 (Thales’s theorem). Let lines 𝐴𝐵 and 𝐶𝐷 intersect the sides 𝑂𝐴 and 𝑂𝐵 of angle ∠𝐴𝑂𝐵 

at points 𝐴, 𝐶, and 𝐵, 𝐷, respectively, as shown in the picture. Then, lines 𝐴𝐵 and 𝐶𝐷 are parallel if 

and only if,  

|𝑂𝐴|

|𝑂𝐵|
=

|𝑂𝐶|

|𝑂𝐷|
 

Or equivalently,  

|𝑂𝐴|

|𝑂𝐶|
=

|𝑂𝐵|

|𝑂𝐷|
 

Exercise. Prove that in this case also 
|𝑂𝐴|

|𝑂𝐵|
=

|𝐴𝐶|

|𝐵𝐷|
.  

Proof. We have already considered and proved a special case of this theorem when discussing the 

midline of a triangle. In general case the proof of this theorem is (un)expectedly difficult (why do 

you think?). In the special case when 
|𝑂𝐴|

|𝑂𝐶|
 is a rational number, the 

theorem follows directly from a simpler theorem which we prove 

below using the properties of a parallelogram, similar to how we 

proved properties of the midline. The case of irrational numbers is 

hard and requires advanced reasoning similar to taking a limit. We 

skip the full proof for now; it will be discussed in Math 9. ◻  

Theorem 41. Let segments 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  on one side of an angle 

∠𝐴𝑂𝐴′ be congruent, 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ , and let parallel lines 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′, 

and 𝐷𝐷′ intersect the other side at the points 𝐴′, 𝐵′, 𝐶′, and 𝐷′, 

respectively, as shown in the figure. Then segments 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐶′𝐷′̅̅ ̅̅ ̅̅  

are also congruent 𝐴′𝐵′̅̅ ̅̅ ̅̅ ≅ 𝐶′𝐷′̅̅ ̅̅ ̅̅ .  

Proof. Left as a homework exercise (consider the figure). ◻  

Corollary. If on one side of an angle ∠𝐴𝑂𝐵 we mark consecutive 

congruent segments, 𝐴1𝐴2
̅̅ ̅̅ ̅̅ ̅ ≅  𝐴2𝐴3

̅̅ ̅̅ ̅̅ ̅ ≅  𝐴3𝐴4
̅̅ ̅̅ ̅̅ ̅ ≅ ⋯, and draw 

parallel lines, 𝐴1𝐵1 ∥ 𝐴2𝐵2 ∥ 𝐴3𝐵3 ∥ 𝐴4𝐵4 … , then segments cut by 

these lines on the other side of the angle are also congruent, 𝐵1𝐵2
̅̅ ̅̅ ̅̅ ̅ ≅  𝐵2𝐵3

̅̅ ̅̅ ̅̅ ̅ ≅  𝐵3𝐵4
̅̅ ̅̅ ̅̅ ̅ ≅ ⋯.  

Exercise. Using the above theorem, prove Thales’s theorem for the case when 
|𝑂𝐴|

|𝑂𝐶|
=

𝑚

𝑛
 is a rational 

number.  
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Similar triangles.  

Definition. If sides of triangles △ 𝐴𝐵𝐶 and △ 𝐴′𝐵′𝐶′ belong to respectively parallel lines, 𝐴𝐵 ∥

𝐴′𝐵′, 𝐵𝐶 ∥ 𝐵′𝐶′, 𝐶𝐴 ∥ 𝐶′𝐴′, then the two triangles are similar, denoted as △ 𝐴𝐵𝐶~ △ 𝐴′𝐵′𝐶′. 

Symmetry operations and rotations preserve the similarity relation between triangles. Namely, if △

𝐴𝐵𝐶~ △ 𝐴′𝐵′𝐶′  and △ 𝐴′′𝐵′′𝐶′′ is related to △ 𝐴′𝐵′𝐶′ via rotation (including central symmetry), 

axial symmetry, or a combination of these, then △ 𝐴′′𝐵′′𝐶′′~ △ 𝐴𝐵𝐶.  

Another way to state the definition is, 

Definition. If using symmetry transformations and rotations triangle △ 𝐴′𝐵′𝐶′ can be positioned 

such that its sides are respectively parallel to the sides of △ 𝐴𝐵𝐶, 𝐴𝐵 ∥ 𝐴′𝐵′, 𝐵𝐶 ∥ 𝐵′𝐶′, 𝐶𝐴 ∥ 𝐶′𝐴′, 

then the two triangles are similar, △ 𝐴𝐵𝐶~ △ 𝐴′𝐵′𝐶′.  

Theorem 42 (AA(A) similarity test). If the corresponding angles of triangles △ 𝐴𝐵𝐶 and △ 𝐴′𝐵′𝐶′  

are equal, ∠𝐴 ≅ ∠𝐴′, ∠𝐵 ≅ ∠𝐵′, ∠𝐶 ≅ ∠𝐶′, then the triangles are similar, △ 𝐴𝐵𝐶~ △ 𝐴′𝐵′𝐶′. Note 

that we need to compare only two pairs of angles, and then the third pair will be also equal.  

Theorem 43 (SSS similarity test). If the corresponding sides of triangles △ 𝐴𝐵𝐶 and △ 𝐴′𝐵′𝐶′  are 

proportional:  

|𝐴𝐵|

|𝐴′𝐵′|
=

|𝐵𝐶|

|𝐵′𝐶′|
=

|𝐴𝐶|

|𝐴′𝐶′|
 

then the triangles are similar, △ 𝐴𝐵𝐶~ △ 𝐴′𝐵′𝐶′.  

The common ratio, 
|𝐴𝐵|

|𝐴′𝐵′|
=

|𝐵𝐶|

|𝐵′𝐶′|
=

|𝐴𝐶|

|𝐴′𝐶′|
= 𝑘, is sometimes called the similarity coefficient. 

Theorem 44 (SAS similarity test). If two pairs of corresponding sides of triangles △ 𝐴𝐵𝐶 and △

𝐴′𝐵′𝐶′  are proportional:  

|𝐴𝐵|

|𝐴′𝐵′|
=

|𝐴𝐶|

|𝐴′𝐶′|
 

and angles between these sides are equal, ∠𝐴 ≅ ∠𝐴′, then the triangles are similar, △ 𝐴𝐵𝐶~ △

𝐴′𝐵′𝐶′. 

Proofs of all of these similarity test theorems follow directly from Thales theorem.  

   



Homework problems 

This homework may be more challenging than usual. Try to solve as many problems as you can, and 

we will discuss them all in class.  

1. (A modification of Inscribed Angle Theorem.) Consider a circle and an angle whose vertex 𝐶 is 

outside this circle and both sides intersect this circle at two points 

as shown in the figure. In this case, the intersection of the angle 

with the circle defines two arcs: 𝐴�̂� and 𝐴′𝐵′̂ . Prove that in this 

case 𝑚∠𝐶 =
1

2
(𝐴�̂� − 𝐴′𝐵′̂ ).  

[Hint: first draw the line 𝐴𝐵′ and find the angle ∠𝐴𝐵′𝐵. Then notice 

that this angle is an exterior angle of △ 𝐴𝐶𝐵′.] 

2. Can you suggest and prove an analog of the previous problem, 

but when the point 𝐶 is inside the circle (you will need to 

replace an angle by two intersecting lines, forming a pair of 

vertical angles)?  

3. Prove Corollary to Theorem 41 using Thales Theorem. Hint: let 
|𝑂𝐵1|

|𝑂𝐴1|
= 𝑘 and show that then |𝐵𝑖𝐵𝑖+1|  =  𝑘|𝐴𝑖𝐴𝑖+1|. 

4. Using Theorem 41 and its corollary, describe how one can divide a 

given segment into 5 equal parts using ruler and compass.  

5. Given segments of length 𝑎, 𝑏, 𝑐, construct a segment of length 
𝑎𝑏

𝑐
  

using ruler and compass. 

6. Let △ 𝐴𝐵𝐶 be a right triangle with ∠𝐶 = 90°, and let 𝐶𝐷 be the 

altitude. Prove that triangles △ 𝐴𝐶𝐷 and △ 𝐶𝐵𝐷 are similar. 

Deduce from this that |𝐶𝐷|2 = |𝐴𝐷| ∙ |𝐷𝐵|.  

7. Let 𝑀 be a point inside a circle and let 𝐴𝐴′, 𝐵𝐵′ be two chords 

through 𝑀. Show that then |𝐴𝑀| ∙ |𝑀𝐴′| = |𝐵𝑀| ∙ |𝑀𝐵′|. [Hint: use 

inscribed angle theorem to show that △ 𝐴𝑀𝐵~ △ 𝐵′𝑀𝐴′].   

8. Let 𝐴𝐴’ and 𝐵𝐵′ be altitudes in the acute triangle △ 𝐴𝐵𝐶. 

a. Show that points 𝐴′, 𝐵′ are on a circle with diameter 𝐴𝐵. 

b. Show that ∠𝐴𝐴′𝐵′ ≅ ∠𝐴𝐵𝐵′, ∠𝐴′𝐵′𝐵 ≅ ∠𝐴′𝐴𝐵 

c. Show that triangle △ 𝐴𝐵𝐶 is similar to triangle △ 𝐴′𝐵′𝐶.  

9. (Chords intersecting outside the circle). Consider circle 𝜔(𝑂, 𝑅), its 

chord 𝐴𝐴′̅̅ ̅̅ ̅, a point 𝐶 on the line (𝐴𝐴′) outside the circle, and the 

tangent 𝐶𝐷̅̅ ̅̅  to the circle. Using similar triangles, prove that  

a. |𝐶𝐴| ∙ |𝐶𝐴′| = |𝐶𝐷|2. 

b. for any chords 𝐴𝐴′̅̅ ̅̅ ̅, 𝐵𝐵′̅̅ ̅̅ ̅ intersecting at point 𝐶 outside the 

circle, |𝐶𝐴| ∙ |𝐶𝐴′| = |𝐶𝐵| ∙ |𝐶𝐵′|. [Hint: connect point 𝐴 to 

𝐷 and consider inscribed and tangent-chord angles.]  


