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Handout 17. Euclidean Geometry 6: Circles.  

Circles.  

Definition. A circle with center 𝑂 and radius 𝑟 > 0 is the set of all points 𝑃 in the plane such that 

|𝑂𝑃| = 𝑟. 

Traditionally, circles are denoted by Greek letters: 𝜆, 𝜔, …. Given a circle 𝜆 with center 𝑂, 

• A radius is any line segment from 𝑂 to a point 𝐴 ∈ 𝜆, 

• A chord is any line segment between distinct points 𝐴, 𝐵 ∈ 𝜆, 

• A diameter is a chord that passes through the center, 𝑂, 

• A line is tangent if it has exactly one common point with the circle and is said to be the 

tangent through that point, 

• Two circles are tangent if they have exactly one common point.  

Theorem 21. Let 𝐴 be a point on circle 𝜆 centered at 𝑂, and 𝑚 a line through 𝐴. Then 𝑚 is tangent to 

𝜆 if and only if 𝑚 ⊥ 𝑂𝐴̅̅ ̅̅ . Moreover, there is exactly one tangent to 𝜆 at 𝐴. 

Proof. First, we prove (𝑚 𝑖𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑜 𝜆)
 

⇒ (𝑚 ⊥ 𝑂𝐴̅̅ ̅̅ ) using the method of contradiction. Suppose 

𝑚 is tangent to 𝜆 at 𝐴 but not perpendicular to 𝑂𝐴̅̅ ̅̅ . Let 𝑂𝐵̅̅ ̅̅  be the perpendicular to 𝑚 through 𝑂, 

with 𝐵 ∈ 𝑚. Construct point 𝐶 ∈ 𝑚 such that |𝐵𝐴| = |𝐵𝐶|; then we have that △ 𝑂𝐵𝐴 ≅△ 𝑂𝐵𝐶 by 

SAS, using |𝑂𝐵| = |𝑂𝐵|, ∠𝑂𝐵𝐴 = ∠𝑂𝐵𝐶 = 90°, and |𝐵𝐴| = |𝐵𝐶|. Therefore |𝑂𝐶| = |𝑂𝐴| and hence 

𝐶 is on 𝜆. But this means that 𝑚 intersects 𝜆 at two points, which is a contradiction.  

Now, we prove (𝑚 ⊥ 𝑂𝐴̅̅ ̅̅ )
 

⇒ (𝑚 𝑖𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑡𝑜 𝜆). Suppose 𝑚 passes through 𝐴 ∈ 𝜆 

such that 𝑚 ⊥ 𝑂𝐴̅̅ ̅̅ . If 𝑚 also passed through 𝐵 on 𝜆, then △ 𝐴𝑂𝐵 would be an 

isosceles triangle since 𝐴𝑂̅̅ ̅̅ , 𝐵𝑂̅̅ ̅̅  are radii of 𝜆. Therefore, ∠𝐴𝐵𝑂 = ∠𝐵𝐴𝑂 = 90°, i.e. 

△ 𝐴𝑂𝐵 is a triangle with two right angles, which is a contradiction. ◻ 

Notice that, given point 𝑂 and line 𝑚, the perpendicular 𝑂𝐴̅̅ ̅̅  from 𝑂 to 𝑚 (with 𝐴 ∈

𝑚) is the shortest distance from 𝑂 to 𝑚, therefore the locus of points of distance 

exactly |𝑂𝐴| from 𝑂 should line entirely on one side of 𝑚. This is essentially the 

idea of the above proof. ◻ 

Theorem 22. Let 𝐴𝐵 be a chord of a circle 𝜆 with center 𝑂. Then 𝑂 lies on the perpendicular bisector 

of 𝐴𝐵̅̅ ̅̅ . Moreover, if 𝐶 ∈ 𝐴𝐵̅̅ ̅̅ , then 𝐶 bisects 𝐴𝐵̅̅ ̅̅  if and only if 𝑂𝐶̅̅ ̅̅ ⊥ 𝐴𝐵̅̅ ̅̅ .  

Proof. Let 𝑚 be the perpendicular bisector of 𝐴𝐵̅̅ ̅̅ . The center 𝑂 of 𝜆 is 

equidistant from 𝐴, 𝐵 by the definition of a circle, therefore 𝑂 must be on 𝑚. 

Let 𝑚 intersect 𝐴𝐵̅̅ ̅̅  at 𝐷. We then have that 𝐷 is the midpoint of 𝐴𝐵̅̅ ̅̅  and also 

the foot of the perpendicular from 𝑂 to 𝐴𝐵̅̅ ̅̅ .  

Then, if 𝐶 bisects 𝐴𝐵̅̅ ̅̅ , 𝐶 lies on the perpendicular bisector 𝑚 of 𝐴𝐵̅̅ ̅̅ , which 

AO
B
C

m

A

B

Cm O



passes through 𝑂, thus 𝑂𝐶̅̅ ̅̅ ⊥ 𝐴𝐵̅̅ ̅̅ . Lastly if 𝑂𝐶̅̅ ̅̅ ⊥ 𝐴𝐵̅̅ ̅̅ , then because there is only one perpendicular to 

𝐴𝐵̅̅ ̅̅  through 𝑂, we must have 𝐶 = 𝐷 and hence 𝐶 is the midpoint of 𝐴𝐵̅̅ ̅̅ . ◻  

Theorem 23. Let 𝜔1, 𝜔2  be circles with centers at points 𝑂1, 𝑂2 that 

intersect at points 𝐴, 𝐵. Then 𝐴𝐵̅̅ ̅̅ ⊥ 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅.  

Proof. Let 𝑙 be the perpendicular bisector of 𝐴𝐵̅̅ ̅̅ . By the previous 

theorem, 𝑙 contains both centers: 𝑂1 ∈ 𝑙, 𝑂2 ∈ 𝑙. Thus, 𝑙 = 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅, so 

𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅  is the perpendicular bisector of 𝐴𝐵̅̅ ̅̅ . Hence,  𝐴𝐵̅̅ ̅̅ ⊥ 𝑂1𝑂2

̅̅ ̅̅ ̅̅ ̅. ◻ 

Theorem 24. [Relative positions of lines and circles] Let 𝜆 be a circle of 

radius 𝑟 with center at 𝑂 and let 𝑙 be a line. Let 𝑑 be the distance from 𝑂 to 𝑙, i.e. the length of the 

perpendicular 𝑂𝑃̅̅ ̅̅  from 𝑂 to 𝑙. Then: 

• If 𝑑 > 𝑟, then 𝜆 and 𝑙 do not intersect. 

• If 𝑑 = 𝑟, then 𝜆 intersects 𝑙 at exactly one point 𝑃, the base of the perpendicular from 𝑂 to 𝑙. 

In this case, we say that 𝑙 is tangent to 𝜆 at 𝑃. 

• If 𝑑 < 𝑟, then λ intersects 𝑙 at two distinct points.  

Proof. First two parts easily follow from the fact that a perpendicular is the (shortest) distance from 

a point to a line. In the last part, it is easy to show that 𝜆 can not intersect 𝑙 at more than 2 points. 

Proving that it does intersect 𝑙 precisely at two points is very hard and requires deep results about 

real numbers. This proof will not be given here. ◻ 

Note that it follows from the definition and Theorem 21 that a tangent line is perpendicular to the 

radius 𝑂𝑃̅̅ ̅̅  at point of tangency. Converse is also true. 

Theorem 25. Let 𝜔1, 𝜔2  be circles that are both tangent to the same line 𝑚 at point 𝐴. Then these 

two circles have only one common point, 𝐴. Such circles are called tangent.  

Proof. By Theorem 21, radiuses 𝑂1𝐴̅̅ ̅̅ ̅ and 𝑂2𝐴̅̅ ̅̅ ̅ are both perpendicular to 𝑚 at 𝐴; since there can only 

be one perpendicular line to 𝑚 at a given point, it means that 𝑂1, 𝑂2, and 𝐴 are on the same line, and 

that  𝑚 ⊥ 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅, i.e, 𝑚 is perpendicular to 𝑂1𝑂2

̅̅ ̅̅ ̅̅ ̅ at 𝐴.  

Now, suppose that 𝜔1, 𝜔2   intersect at point 𝐵 ≠ 𝐴. Then by the previous theorem,  𝐴𝐵̅̅ ̅̅ ⊥ 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅, 

therefore both 𝐴𝐵̅̅ ̅̅  and 𝑚 are perpendicular to  𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ through 𝐴. We must therefore have that 𝐵 is on 

𝑚, but 𝑚 is tangent to 𝜔1 through 𝐴, thus has only one intersection with 𝜔1, which is a 

contradiction. ◻ 

Arcs and angles.  

Consider a circle 𝜆 with center 𝑂, and an angle formed by two rays from 𝑂. Then these two rays 

intersect the circle at points 𝐴, 𝐵, and the portion of the circle inside this angle is called the arc 

subtended by ∠𝐴𝑂𝐵. 
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Theorem 26. Let 𝐴, 𝐵, 𝐶 be on a circle 𝜆 with center 𝑂. Then ∠𝐴𝐶𝐵 =
1

2
∠𝐴𝑂𝐵. The angle ∠𝐴𝐶𝐵 B is 

said to be inscribed in 𝜆.  

Proof. There are actually a few cases to consider here, since 𝐶 may 

be positioned such that 𝑂 is inside, outside, or on the angle ∠𝐴𝐶𝐵. 

We will prove the first case here, which is pictured on the right.  

Case 1. Draw in segment 𝑂𝐶̅̅ ̅̅ . Denote 𝑚∠𝐴 = 𝑥, 𝑚∠𝐵 = 𝑦. Since △

𝐴𝑂𝐶 is isosceles, 𝑚∠𝐴𝐶𝑂 = 𝑥; similarly 𝑚∠𝐵𝐶𝑂 = 𝑦, so 𝑚∠𝐴𝐶𝐵 =

𝑥 + 𝑦, and 𝑚∠𝐴𝑂𝐶 = 180° − 2𝑥, 𝑚∠𝐵𝑂𝐶 = 180° − 2𝑦. Therefore, 

𝑚∠𝐴𝑂𝐶 + 𝑚∠𝐵𝑂𝐶 = 360° − 2(x +  y). This implies 𝑚∠𝐴𝑂𝐵 =

2(𝑥 + 𝑦). ◻ 

As a result of Theorem 26, we get that any triangle △ 𝐴𝐵𝐶 on 𝜆 where 𝐴𝐵̅̅ ̅̅  is a diameter must be a 

right triangle, since the angle ∠𝐴𝐶𝐵 has half the measure of angle ∠𝐴𝑂𝐵, which is 180°. 

The idea captured by the concept of an arc and Theorem 26 is that there is a fundamental 

relationship between angles and arcs of circles, and that the angle 360° can be thought of as a full 

circle around a point.  

Homework problems 

Note that you may use all results that are presented in the previous sections. This means that you 

may use any theorem if you find it a useful logical step in your proof. The only exception is when 

you are explicitly asked to prove a given theorem, in which case you must understand how to draw 

the result of the theorem from previous theorems and axioms.  

1. Prove that given a segment 𝐴𝐵̅̅ ̅̅ , there is a unique circle with diameter 𝐴𝐵̅̅ ̅̅ . 

2. Given lines 𝐴𝐵̅̅ ̅̅ ⊥ 𝐶𝐷̅̅ ̅̅  such that 𝐴𝐷̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅  intersect at 𝐸 and |𝐴𝐸| = |𝐸𝐷|, prove that |𝐵𝐸| = |𝐸𝐶|.  

3. Prove that if a diameter of circle 𝜆 is a radius of circle 𝜔, then 𝜆, 𝜔 are tangent.  

4. Complete the proof of Theorem 26 by proving the cases where 𝑂 is not inside the angle ∠𝐴𝐶𝐵. 

[Hint: for one of the cases, you may need to write ∠𝐴𝐶𝐵 as the difference of two angles.] 

5. Prove the converse of Theorem 26: namely, if 𝜆 is a circle centered at 𝑂 and 𝐴, 𝐵, are on 𝜆, and 

there is a point 𝐶 such that 𝑚∠𝐴𝐶𝐵 =
1

2
𝑚∠𝐴𝑂𝐵, then C lies on 𝜆. [Hint: we need to prove that 

|𝑂𝐶| = |𝑂𝐴|; consider using a proof by contradiction] 

6. Let 𝐴, 𝐵 be on circle 𝜆 centered at 𝑂 and 𝑚 the tangent to 𝜆 at 𝐴. Let 𝐶 be on 𝑚 such that 𝐶 is on 

the same side of 𝑂𝐴̅̅ ̅̅  as 𝐵. Prove that 𝑚∠𝐵𝐴𝐶 =
1

2
𝑚∠𝐵𝑂𝐶. [Hint: extend 𝑂𝐴̅̅ ̅̅  to intersect 𝜆 at 

point 𝐷 so that 𝐴𝐷̅̅ ̅̅  is a diameter of 𝜆. What arc does ∠𝐷𝐴𝐵 subtend?] 

7. Prove that, given two distinct points 𝐴, 𝐵 on circle 𝜆 which are on the same side of diameter 𝐶𝐷̅̅ ̅̅  

of 𝜆, 𝐶𝐵 ≠ 𝐶𝐴.  

8. Let 𝐴𝐵̅̅ ̅̅ , 𝐶𝐷̅̅ ̅̅  both have midpoint 𝐸 and let 𝐹, 𝐺 be points such that 𝐵𝐸𝐶𝐹 and 𝐴𝐸𝐷𝐺 are 

parallelograms. Prove that 𝐸 is the midpoint of 𝐹𝐺. 


