
December 15, 2024         Math 8 

Handout 14. Euclidean geometry 3: Triangle inequalities.  

Broken lines and polygons.  

After we have introduced elementary objects, including undefined ones, and axioms and common 

notions that describe their properties, we can proceed with building up the Euclidean geometry. We 

will do so by introducing more complex objects and formulating and proving theorems which 

specify more complex properties of objects and relations among them.  

Definition. A set of connected straight segments not all lying on a straight line, such that each two 

consecutive segments share an end point, form a broken line. A broken line is convex if it lies on one 

side of all the straight lines containing each of its segments. Otherwise, the line is concave. A broken 

line whose endpoints coincide is called closed.  

 

Definition. A set of points on the plane bounded by a non-intersecting closed broken line is called 

polygon. In other words, a polygon is the figure formed by a non-intersecting broken line and the 

part of the plane bounded by it. The straight segments constituting the broken line are called sides 

of the polygon and their endpoints are vertices. The angles formed by the adjacent sides sharing a 

vertex are called (interior) angles of the polygon. A polygon is convex if it is formed by a convex 

closed broken line, otherwise it is concave. The broken line itself is called the boundary of the 

polygon, and the total length of its segments the perimeter. Polygons with small number of vertices 

have special names. The smallest possible number of vertices is 3, such polygons are called 

triangles; polygons with 4 vertices are quadrilaterals, with 5 pentagons, with 6 hexagons, and so on.  

Triangles. Isosceles triangles. Equilateral triangle.  

The first and one of the most important geometrical figures we consider is a triangle. Any polygon 

can be represented as a combination of triangles.  

Exercise 1. What is the sum of the angles of a convex quadrilateral? Pentagon? Hexagon? 𝑛-gon? 

Definition. A triangle is a polygon with three sides (and three vertices, and three angles). 

Alternatively, triangle is a set of points on the plane bounded by the three segments connecting 

three given points.   

Lines in a triangle. In any triangle, there are three special lines from each vertex.  
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In a △ 𝐴𝐵𝐶, the segment (𝐵𝐻) connecting a vertex with the opposite side (base) and perpendicular 

to that side is called an altitude (it exists and is unique by Theorem about the existence of the 

perpendicular). The segment (𝐵𝑀) connecting a vertex with the midpoint of the opposite side 

(base) is called a median. The segment (𝐵𝐹) connecting a vertex with the opposite side (base) and 

dividing the angle at the vertex in two equal halves, ∠𝐴𝐵𝐹 ≅ ∠𝐹𝐵𝐶, is called a bisector. For general 

triangle, all three lines are different. However, as we will see below, in some triangles they coincide. 

 

Definition. A triangle is isosceles if two of its sides have equal length. The two sides of equal length 

are called legs; the point where the two legs meet is called the apex of the triangle; the other two 

angles are called the base angles of the triangle; and the third side is called the base. While an 

isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us that 

is equivalent to having two angles of equal measure.  

Theorem 10. In an isosceles triangle, the bisector of the angle at the apex (vertex opposite the base) 

is at the same time the median and the altitude.  

Proof. Consider an isosceles triangle △ 𝐴𝐵𝐶 with a median 𝐵𝑀 from apex 𝐵. We observe that 𝐴𝐵 ≅

𝐶𝐵 (by definition of isosceles triangle), 𝐴𝑀 ≅ 𝐶𝑀 (by definition of midpoint), and side 𝐵𝑀 is 

shared by both triangles. It then follows from the SSS congruence theorem that △ 𝐴𝐵𝐶 ≅△ 𝐷𝐸𝐹. 

Then, by SAS axiom, 𝑚∠𝐴𝐵𝑀 = 𝑚∠𝐶𝐵𝑀, so 𝐵𝑀 is the bisector of the angle ∠𝐴𝐵𝐶. It also follows 

that 𝑚∠𝐴𝑀𝐵 = 𝑚∠𝐶𝑀𝐵. On the other hand, 𝑚∠𝐴𝑀𝐵 + 𝑚∠𝐶𝑀𝐵 = 180°. It then follows that 

𝑚∠𝐴𝑀𝐵 = 𝑚∠𝐶𝑀𝐵 = 90°, so 𝐵𝑀 is the altitude.  ◻ 

Theorem 11 (base angles equal). If △ 𝐴𝐵𝐶 is isosceles with base 𝐴𝐶, then 𝑚∠𝐴 = 𝑚∠𝐶 (i.e., 

∠𝐵𝐴𝐶 ≅ ∠𝐵𝐶𝐴). Conversely, if △ 𝐴𝐵𝐶 has 𝑚∠𝐴 = 𝑚∠𝐶, then it is isosceles with base 𝐴𝐶.  

The direct and converse theorem provide the necessary and sufficient conditions for a triangle to be 

isosceles, which can be formulated as, 

(△ 𝐴𝐵𝐶 𝑖𝑠 𝑖𝑠𝑜𝑠𝑐𝑒𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑏𝑎𝑠𝑒 𝐴𝐶)  
 

⇔ (𝑚∠𝐴 = 𝑚∠𝐶) 

Proof. Left as a homework exercise. We need to prove both necessary and sufficient condition. ◻ 

Definition (axial symmetry). If two points, 𝐴 and 𝐶, are on the opposite sides of a line 𝑎 = 𝐵𝐻 ⃡     which 

is perpendicular to 𝐴𝐶 and are the same distance away from the foot of the perpendicular, 𝐻, i.e. 

𝐴𝐻 ≅ 𝐵𝐻, then points 𝐴 and 𝐶 are called symmetric with respect to the line 𝑎.  
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Two figures (or two parts of a figure) are symmetric with respect to line 𝑎 if for each point of one 

figure (or one part of a figure) there is a symmetric point in the other figure (or the other part of 

the figure) and vice versa.  The line 𝑎 is called the axis of symmetry.  

Triangle inequalities. 

Now we can proceed with proving some important properties of triangles which underlie great 

number of practical applications of Euclidean geometry. In this section, we use previous results 

about triangles to prove two important inequalities which hold for any triangle. 

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are 

also equal (this is a property of an isosceles triangle we proved). The next theorem extends this 

result: in a triangle, if one angle is bigger than another, the side opposite the bigger angle must also 

be longer than the one opposite the smaller angle.  

Theorem 12. In △ 𝐴𝐵𝐶 , if 𝑚∠𝐴 > 𝑚∠𝐶, then we must have |𝐵𝐶| > |𝐴𝐵|. Conversely, if |𝐵𝐶| > |𝐴𝐵| 

then 𝑚∠𝐴 > 𝑚∠𝐶. Or, using logic notations, 

∀ △ 𝐴𝐵𝐶, (𝑚∠𝐴 > 𝑚∠𝐶)
 

⇔ (|𝐵𝐶| > |𝐴𝐵|) 

Proof. First, we prove (𝑚∠𝐴 > 𝑚∠𝐶)
 

⇒ (|𝐵𝐶| > |𝐴𝐵|), i.e., if 𝑚∠𝐴 > 𝑚∠𝐶, then |𝐵𝐶| > |𝐴𝐵| using 

proof by contradiction. Assume that (𝑚∠𝐴 > 𝑚∠𝐶) ∧ (|𝐵𝐶| ≤ |𝐴𝐵|). If |𝐵𝐶| = |𝐴𝐵|, then △ 𝐴𝐵𝐶 is 

isosceles with the base 𝐴𝐶 and, according to theorem 11, 𝑚∠𝐴 = 𝑚∠𝐶, which contradicts 𝑚∠𝐴 >

𝑚∠𝐶. Assume now |𝐵𝐶| < |𝐴𝐵|.  Find the point 𝐷 on 𝐴𝐵 such that |𝐵𝐷| = |𝐵𝐶|, and draw the 

segment 𝐶𝐷. △ 𝐵𝐶𝐷 is isosceles with the apex 𝐵 and, therefore, 𝑚∠𝐵𝐷𝐶 = 𝑚∠𝐵𝐶𝐷. On the other 

hand, 𝑚∠𝐵𝐶𝐷 < 𝑚∠𝐶 (this easily follows from Angle Measurement Axiom) and 𝑚∠𝐴 < 𝑚∠𝐵𝐷𝐶 

because ∠𝐵𝐷𝐶 is an external angle of  △ 𝐴𝐶𝐷 and therefore is larger than any internal angle of that 

triangle. We thus obtain, 𝑚∠𝐴 < 𝑚∠𝐵𝐷𝐶 = 𝑚∠𝐵𝐶𝐷 < 𝑚∠𝐶, which contradicts 𝑚∠𝐴 > 𝑚∠𝐶.  

Exercise 2. (homework). Prove (|𝐵𝐶| > |𝐴𝐵|)
 

⇒ (𝑚∠𝐴 > 𝑚∠𝐶) ◻ 

 

This leads us to a proof of one of the most important theorems in Euclidean geometry, which also 

has counterparts in linear algebra and vector analysis (Cauchy–Schwarz inequality), and other 

branches of mathematics.   

Theorem 13 (the triangle inequality). In a triangle, a side is less than the sum of the two other sides, 

∀ △ 𝐴𝐵𝐶, |𝐴𝐵| < |𝐵𝐶| + |𝐶𝐴| 
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Proof. Extend the line 𝐵𝐶 past 𝐶 to the point 𝐷 so that |𝐴𝐶| = |𝐶𝐷| and join the points 𝐴 and 𝐷 with 

a line so as to form the triangle △ 𝐴𝐵𝐷. Observe that △ 𝐴𝐶𝐷 is isosceles with apex at 𝐶; hence 

𝑚∠𝐶𝐴𝐷 = 𝑚∠𝐶𝐷𝐴. It immediately follows that 𝑚∠𝐵𝐴𝐷 = 𝑚∠𝐵𝐴𝐶 + 𝑚∠𝐶𝐴𝐷 > 𝑚∠𝐶𝐷𝐴. Then, by 

Theorem 12, this implies |𝐵𝐷| > |𝐴𝐵|. Our result now follows from |𝐵𝐷| = |𝐵𝐶| + |𝐶𝐷| (Axiom 2) 

and |𝐴𝐶| = |𝐶𝐷| (by construction). ◻ 

Homework problems 

Note that you may use all results that are presented in the previous sections. This means that you 

may use any theorem if you find it a useful logical step in your proof. The only exception is when 

you are explicitly asked to prove a given theorem, in which case you must understand how to draw 

the result of the theorem from previous theorems and axioms. 

1. (Slant lines and perpendiculars) Let 𝑃 be a point not on line 𝑙, and let 𝑄 ∈ 𝑙 be such that 𝑃𝑄 ⊥ 𝑙. 
Prove that then, for any other point 𝑅 on line 𝑙, we have 𝑃𝑅 > 𝑃𝑄, i.e. the perpendicular is the 
shortest distance from a point to a line. Note: you cannot use the Pythagorean theorem for this, 
as we haven’t yet proved it! Instead, use Theorem 12.  

2. Review the proof of Theorem about the sum of angles of a triangle and solve Exercise 1 about 
the sum of the angles of a convex polygon.  

3. (Angle bisector). Define a distance from a point 𝑃 to line 𝑙 as 
the length of the perpendicular from P to 𝑙 (compare with the 

previous problem). Let 𝑂𝑀        be the angle bisector of ∠𝐴𝑂𝐵, i. e. 
∠𝐴𝑂𝑀 ≅ ∠𝑀𝑂𝐵.  

a. Let 𝑃 be any point on 𝑂𝑀       , and 𝑃𝑄, 𝑃𝑅 – perpendiculars 

from 𝑃 to sides 𝑂𝐴      , 𝑂𝐵       respectively. Use ASA axiom to 

prove that triangles △ 𝑂𝑃𝑅 and △ 𝑂𝑃𝑄 are congruent 

and deduce from this that distances from 𝑃 to 𝑂𝐴      , 𝑂𝐵       are equal. 
b. Prove that conversely, if 𝑃 is a point inside angle ∠𝐴𝑂𝐵, and distances from 𝑃 to the two 

sides of the angle are equal, then 𝑃 must lie on the angle bisector, 𝑂𝑀       .  

These two statements show that the locus of points equidistant from the two sides of an angle is the 
angle bisector.  

4. Prove that in any triangle, the three angle bisectors intersect at a single point (compare with the 
similar fact about perpendicular bisectors).  


