
December 8, 2024         Math 8 

Handout 13. Euclidean geometry 2: Axioms and Theorems.  

Euclidean Geometry: Axioms. 

After we introduced elementary objects, including undefined ones, we need to have statements 

(axioms) that describe their properties. Of course, the lack of definition for undefined objects 

makes such properties impossible to prove. The goal here is to state the minimal number of such 

properties that we take for granted, called axioms, just enough to be able to prove or derive harder 

and more complicated statements, theorems.  

As a basis for further logical deductions, Euclid proposed to use five “common notions” such as 

“things equal to the same thing are equal,” and five unprovable but intuitive principles known 

variously as postulates or axioms.  

Common notions  

1. Things which equal the same thing also equal one another.  

2. If equals are added to equals, then the wholes are equal.  

3. If equals are subtracted from equals, then the remainders are equal.  

4. Things which coincide with one another equal one another.  

5. The whole is greater than the part. 

Axiom 1. Given two points, there is a straight line that joins them.  

Axiom 2. A straight line segment can be prolonged indefinitely. 

Axiom 3. A circle can be constructed when a point for its center and a distance for its radius are 

given.  

Axiom 4. All right angles are equal.  

Axiom 5. If a straight line falling on two straight lines makes the interior angles on the same side 

less than two right angles, the two straight lines, if produced indefinitely, will meet on that side on 

which the angles are less than the two right angles.  

There are many other, equivalent ways to state the same axioms. Hilbert refined axioms (1) and 

(5), and stated in modern terms these axioms are as follows: 

Axiom 1. For any two different points, (a) there exists a line containing these two points, and (b) 

this line is unique. That is, for any two distinct points 𝐴, 𝐵, there is exactly one, one and only one 

line to which both these points belong. (This line is usually denoted 𝐴𝐵 ⃡    ). In other words, two 

distinct points are sufficient (and necessary) to specify a line. 

Axiom 5. For any line 𝑙 and point 𝑝 not on 𝑙, (a) there exists a line through 𝑝 not meeting 𝑙, and (b) 

this line is unique.  



Here is yet another way to state the same Axiom 5, which we will use: 

Axiom 5. Let line 𝑙 intersect lines 𝑚, 𝑛 and angles ∠1, ∠2 are as shown 

in the figure (in this situation, such a pair of angles is called alternate 

interior angles). Then 𝑚 ∥ 𝑛 if and only if 𝑚∠1 = 𝑚∠2.  

This fifth axiom is also known as the “parallel postulate,” since it provides a basis for the 

uniqueness of parallel lines. It attracted great interest because unlike Euclid’s other four postulates, 

it never seemed entirely self-evident and there were many efforts to prove it through the centuries. 

This quest has ended in the 19th century when Nikolay Lobachevsky followed by János Bolyai and 

Carl Friedrich Gauss discovered that altering the parallel postulate resulted in perfectly consistent 

non-Euclidean geometries thus breaking the uniqueness of Euclidean geometry.  

All five axioms provide the basis for numerous provable statements, or theorems, on which Euclid 

built his geometry. We will supplement these axioms with another two.  

Axiom 6. If distinct points 𝐴, 𝐵, 𝐶, are on the same line, exactly one is between the other two; if 

point 𝐵 is between 𝐴 and 𝐶, then 𝐴𝐶 = 𝐴𝐵 + 𝐵𝐶. 

Axiom 7. If point 𝐵 is inside angle ∠𝐴𝑂𝐶, then 𝑚∠𝐴𝑂𝐶 =  𝑚∠𝐴𝑂𝐵 +

𝑚∠𝐵𝑂𝐶. Also, the measure of a straight angle is equal to 180 degrees.  

In addition, we will assume that given a line 𝑙 and a point 𝐴 on it, for 

any positive real number 𝑑, there are exactly two points on 𝑙 at 

distance 𝑑 from 𝐴, on opposite sides of 𝐴, and similarly for angles: 

given a ray and angle measure, there are exactly two angles with that measure having that ray as 

one of the sides.  

Euclidean Geometry: First Theorems. 

Now we can proceed with proving some results based on the axioms above. 

Theorem 1. If distinct lines 𝑙, 𝑚 intersect, then they intersect at exactly one point.  

Proof. Proof by contradiction: Assume that they intersect at more than one point. Let 𝑃, 𝑄 be two of 

the points where they intersect. Then both 𝑙, 𝑚 go through 𝑃, 𝑄. This contradicts Axiom 1. Thus, our 

assumption (that 𝑙, 𝑚 intersect at more than one point) must be false. ◻ 

Theorem 2. Given a line 𝑙 and point 𝑃 not on 𝑙, there exists a unique line 𝑚 through 𝑃 which is 

parallel to 𝑙. 

Proof. This, of course, is just the Hilbert formulation of the Axiom 5. As an axiom, it cannot be 

proven. However, if we accept another formulation of Axiom 5, then this statement becomes a 

theorem which needs to be proven. Here, we use the last formulation of the axiom 5 given above 

and prove this one as a theorem. We can also accept this formulation as an axiom and then prove 

the other one. Doing so will establish the equivalence of the two formulations of Axiom 5.  



We have to prove two things: the existence of a parallel line through the given point not on the 

given line, and its uniqueness. Below we provide a sketch of the proof – please fill in the details and 

draw a diagram at home! 

Existence: Let 𝑚 be any line that goes through 𝑃 and intersect 𝑙 at point 𝑂. Let 𝐴 be a point on the 

line 𝑙. Then we can measure the angle ∠𝑃𝑂𝐴. Now, let 𝑃𝐵 be such that 𝑚∠𝑃𝐵𝑂= 𝑚∠𝑃𝑂𝐴 and 𝐵 is 

on the other side of 𝑚 than 𝐴. In this case, by Axiom 5,  𝑃𝐵 ⃡    ∥ 𝑙.  

Uniqueness: Imagine that there are two lines 𝑚, 𝑛 that are parallel to 𝑙 and go through 𝑃. Take a line 

𝑘 that goes through 𝑃 and intersects 𝑙 at point 𝑂. Let 𝐴 be a point on line 𝑙 distinct from 𝑂, and 𝐵, 𝐶 

– points on lines 𝑚 and 𝑛 respectively on the other side of line 𝑘 than 𝐴. Since both 𝑚, 𝑛 are parallel 

to 𝑙, we can see that 𝑚∠𝐴𝑂𝑃 =  𝑚∠𝐵𝑃𝑂 =  𝑚∠𝐶𝑃𝑂 – but that would mean that lines 𝐵𝑃 and 𝐶𝑃 are 

the same, in contradiction to our assumption that there are two such lines. ◻ 

Theorem 3. If 𝑙 ∥ 𝑚 and 𝑚 ∥ 𝑛, then 𝑙 ∥ 𝑛.  

Proof. Assume that 𝑙 and 𝑛 are not parallel and intersect at point 𝑃. But then it appears that there 

are two lines that are parallel to 𝑚 are go through point 𝑃 – contradiction with Theorem 2 (or 

Axiom 5 in Hilbert’s formulation). ◻ 

Theorem 4. Let 𝐴 be the intersection point of lines 𝑙, 𝑚, and let 

angles 1,3 be as shown in the figure below (such a pair of angles 

are called vertical). Then 𝑚∠1 = 𝑚∠3.  

Proof. Let angle 2 be as shown in the figure to the left. Then, by 

Axiom 7, 𝑚∠1 + 𝑚∠2 = 180°, so 𝑚∠1 = 180° − 𝑚∠2. Similarly, 

𝑚∠3 = 180° − 𝑚∠2. Thus, 𝑚∠1 = 𝑚∠3. ◻ 

Theorem 5. Let 𝑙, 𝑚 be intersecting lines such that one of the four angles formed by their 

intersection is equal to 90°. Then the three other angles are also equal to 90° (In this case, we say 

that lines 𝑙, 𝑚 are perpendicular and write 𝑙 ⊥ 𝑚.) 

Proof. Left as a homework exercise. ◻ 

Theorem 6. Let 𝑙1, 𝑙2 be perpendicular to 𝑚. Then 𝑙1 ⊥ 𝑙2. Conversely, if 𝑙1 ⊥ 𝑚 and 𝑙2 ⊥ 𝑙1, then 𝑙2 ⊥

𝑚. 

Proof. Left as a homework exercise. ◻ 

Theorem 7. Given a line 𝑙 and a point 𝑃 not on 𝑙, there exists a unique line 𝑚 through 𝑃 which is 

perpendicular to 𝑙. 

Proof. Left as a homework exercise. ◻ 

Triangles. 

Theorem 8. Given any three points 𝐴, 𝐵, 𝐶, which are not on the same line, and line segments 𝐴𝐵, 

𝐵𝐶, and 𝐶𝐴, we have 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐵𝐶𝐴 + 𝑚∠𝐶𝐴𝐵 = 180°. (Such a figure of three points and their 



respective line segments is called a triangle, written △ 𝐴𝐵𝐶. The three respective angles are called 

the triangle’s interior angles.)  

Proof. The proof is based on the figure and use of Alternate 

Interior Angles axiom. Details are left to you as a homework.  

Congruence. 

It will be helpful, in general, to have a way of comparing geometric objects to tell whether they are 

the same. We will build up such a notion and call it congruence of objects. To begin, we define 

congruence of angles and congruence of line segments (note that an angle cannot be congruent to a 

line segment; the objects have to be the same type). 

• If two angles ∠𝐴𝐵𝐶 and ∠𝐷𝐸𝐹 have equal measure, then they are congruent angles, written 

∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹.  

• If the distance between points 𝐴, 𝐵 is the same as the distance between points 𝐶, 𝐷, then the 

line segments 𝐴𝐵 and 𝐶𝐷 are congruent line segments, written 𝐴𝐵 ≅ 𝐶𝐷. 

• If two triangles △ 𝐴𝐵𝐶, △ 𝐷𝐸𝐹 have respective sides and angles congruent, then they are 

congruent triangles, written △ 𝐴𝐵𝐶 ≅△ 𝐷𝐸𝐹. In particular, this means 𝐴𝐵 ≅ 𝐷𝐸, 𝐵𝐶 ≅ 𝐸𝐹, 

𝐶𝐴 ≅ 𝐹𝐷, ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹, ∠𝐵𝐶𝐴 ≅ ∠𝐸𝐹𝐷, and ∠𝐶𝐴𝐵 ≅ ∠𝐹𝐷𝐸. 

Note that congruence of triangles is sensitive to which vertices on one triangle correspond to which 

vertices on the other. Thus, △ 𝐴𝐵𝐶 ≅△ 𝐷𝐸𝐹
 

⇒ 𝐴𝐵 ≅ 𝐷𝐸, and it can happen that △ 𝐴𝐵𝐶 ≅△ 𝐷𝐸𝐹 

but ¬(△ 𝐴𝐵𝐶 ≅△ 𝐸𝐹𝐷).  

Congruence of triangles. 

Triangles consist of six measurable pieces (three line segments and three angles), which can be 

used to establish a notion of constancy of shape in triangles, which is important in geometry. We 

describe below some rules that allow us to, in essence, uniquely determine the shape of a triangle 

by looking at a specific subset of its pieces. 

Axiom 8 (SAS Congruence). If triangles △ 𝐴𝐵𝐶 and △ 𝐷𝐸𝐹 have two congruent sides and a 

congruent included angle (meaning the angle between the sides in question), then the triangles are 

congruent. In particular, if 𝐴𝐵 ≅ 𝐷𝐸, 𝐵𝐶 ≅ 𝐸𝐹, and ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹, then △ 𝐴𝐵𝐶 ≅△ 𝐷𝐸𝐹. 

Other congruence rules about triangles follow from the above: the ASA and SSS rules. However, 

their proofs are less interesting than other problems about triangles, so we leave them for the 

homework. 

Axiom 9 (ASA Congruence). If two triangles have two congruent angles and a corresponding 

included side, then the triangles are congruent. 

Axiom 10 (SSS Congruence). If two triangles have three sides congruent, then the triangles are 

congruent.   



Homework problems 

1. (Parallel and Perpendicular Lines) Part of the spirit of Euclidean geometry is that parallelism 
and perpendicularity are special concepts; Theorem 6, for example, is generally considered part 
of the heart of Euclidean geometry. For this problem, prove the following theorems presented 
in the First Theorems section, using only the information from the Basic Objects and First 
Postulates sections. Axiom 5 will be of key importance.  

a. Study the proof of Theorem 2 and draw a diagram that illustrates it.  
b. Study the proof of Theorem 3. 
c.  Prove Theorem 5. 
d.  Prove Theorem 6. 
e.  Prove Theorem 7.  

2. Complete the proof of Theorem 8, about sum of angles of a triangle.  
3. What is the sum of angles of a quadrilateral? of a pentagon? 
4. Prove the SSS rule of congruence for triangles.  
5. Notice that SSA and AAA are not listed as congruence rules.  

a. Describe a pair of triangles that have two congruent sides and one congruent angle but 
are not congruent triangles.  

b. Describe a pair of triangles that have three congruent angles but are not congruent 
triangles.  

6. Prove that the following two properties of a triangle are equivalent: 
a. All sides have the same length.  

b. All angles are 60° 

A triangle satisfying these properties is called equilateral. 

7. A triangle in which two sides are congruent is called isosceles. Such triangles have many special 
properties.  

a. Let △ 𝐴𝐵𝐶 be an isosceles triangle, with 𝐴𝐵 ≅ 𝐵𝐶. Suppose 𝐷 is 

a point on 𝐴𝐶 such that 𝐴𝐷 ≅ 𝐷𝐶 (such point is called midpoint 

of the segment). Prove that then, △ 𝐴𝐵𝐷 ≅△ 𝐶𝐵𝐷 and deduce 

from this that ∠𝐷𝐵𝐴 ≅ ∠𝐷𝐵𝐶, and ∠𝐴 ≅ ∠𝐶. What can we say 

about ∠𝐴𝐷𝐵?  

b. Conversely, show that if △ 𝐴𝐵𝐶 is such that ∠𝐴 ≅ ∠𝐶, then △

𝐴𝐵𝐶 is isosceles, with 𝐴𝐵 ≅ 𝐵𝐶.  


